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Abstract

In our recent work [1], we discuss the island and show that the Page curve can
be recovered for Gauss-Bonnet gravity in AdS/BCFT. Interestingly, there are
zeroth-order phase transitions for the Page curve within one range of cou-
plings obeying causality constraints. Generalizing the discussions to holo-
graphic entanglement entropy and holographic complexity in AdS/CFT, we
get new constraints for the Gauss-Bonnet coupling, which is stronger than
the causality constraint.

Background

Fig. 1: Doubly holographic setup: Black hole

lives on Q (x = 0); bath lives on M (z = 0).

Fig. 2: Page curve is combined by the orange curve when

t < tP and the blue curve when t ≥ tP .

•Gauss-Bonnet gravity action:
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•Causality constraint:
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• Jacobson-Myers entropy formula:
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m: codim-2 extremal surface; R: intrinsic Ricci scalar on m;
∂m: boundary of m; K: extrinsic curvature on ∂m.
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Fig. 3: Penrose diagram for the extremal

surface (orange curve) passing through the

horizon. Here z = zs denotes singularity.
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Fig. 4: Conserved quantity EI (7) as a function of zmax for

d = 4. The extremal surface is well-defined only in the solid

lines. The entropy (6) become complex in the dotted lines.

•Embedding function of the extremal surface passing through the horizon
(orange curve in Fig.1.):

orange curve : v = t−
∫

f∞
f (z)

dz = v(z), x = x0. (5)

•Entropy functional:
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where z = zmax is the turning point (see Fig.3), Vd−2 =
∫
dd−2y is the

volume of horizontal space.

•Conserved quantity (see Fig.4):
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• In the large-time limit, lim
t→∞

dEI/dzmax = 0, z̄max = lim
t→∞

zmax, we get
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•Entanglement entropy growth rate:
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•Note that (8) and thus (9) is well-defined if and only if

λGB ≥ λc = − (d− 2)2

4d(3d− 4)
. (10)

If the bound (10) is violated, the extremal surface passing through the
horizon is not well-defined in the late time limit t → ∞ .

Conclusions and Discussions
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Fig. 5: Three kinds of Page curve for eternal Gauss-Bonnet black holes with d = 4.

•We recover the Page curve for the eternal black
hole. As shown in Fig.5, there are three kinds of
Page curve for Gauss-Bonnet black holes with
d = 4.

Case I: − 18
√
3− 31

16
≤ λGB ≤ 9

100
,

there is a first-order phase transition at
the Page time (orange and blue in Fig.5).

Case II: − 1

32
≤ λGB < − 18

√
3− 31

16
,

there is a zeroth-order phase transition
at the early time and a first-order phase
transition at the late time for the second case
(green in Fig.5).

Case III: − 7

36
≤ λGB < − 1

32
,

there are two zeroth-order phase transi-
tions of entanglement entropy (red in Fig.5).

•Unlike AdS/BCFT, there is only one kind of ex-
tremal surfaces in AdS/CFT. The entanglement
entropy is not well-defined after some finite time
for case III. One has to impose a lower bound

− (d− 2)2

4d(3d− 4)
≤ λGB. (11)

The constraint (11) is stronger than the causal-
ity constraint (2).

•By using the complexity=volume conjecture
[2, 3], we derive a new bound

− 1

12
≤ λGB, (12)

in order that the time evolution of complexity
is well-behaved at late times. Note that (12)
is weaker than the constraint (11) but stronger
than the causality constraint (2).
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