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Introduction
Gravitational collapse inevitably leads to spacetime singu-
larity [1, 2] which indicates the failure of gravitational the-
ory. To protect the predictability of gravitational theories,
Penrose proposed the weak cosmic censorship conjecture,
which states that spacetime singularities are hidden behind
black hole event horizons and can never be seen by dis-
tant observers [3]. The conjecture has become one of the
foundations of black hole physics though a general proof
is still beyond reach. The weak cosmic censorship conjec-
ture preserves the predictability of classical gravitational
theories. However, it also forbids us to probe the high
curvature regions inside the event horizon where quantum
properties cannot be neglected. Thus, the destruction of
the event horizon might provide us the possibility to ac-
cess quantum regime of gravity inside black holes.
For a black holes with singularity inside its event horizon,
the destruction of the event horizon is prohibited by the
weak cosmic censorship conjecture. However, for a non-
singular black hole, there is no central singularity inside the
event horizon and the whole spacetime is regular. Hence,
the destruction of the event horizon of a nonsingular black
hole is not prohibited by the weak cosmic censorship con-
jecture [4], and the destruction of such black hole does
not lead to the loss of predictability.
Pioneering work of Wald showed that particles causing
the destruction of the event horizon of an extremal Kerr-
Newman black hole just not be captured by the black
hole [5]. This indicates that the event horizon of an ex-
tremal Kerr-Newman black hole cannot be destroyed by
test particles. While further investigations suggest that
a near-extremal black hole might “jump over” the ex-
tremal limit and become a naked singularity [6, 7]. Hubeny
showed that a near-extremal charged black hole can be
overcharged by test particles [6]. By extending Hod’s re-
sult, Jacobson and Sotiriou found that the event horizon
of a near-extremal Kerr black hole can be destroyed [8].
Besides the injection of particles to destroy an event
horizon, the scattering of fields is also used to test the
weak cosmic censorship conjecture. The scattering of a
scalar field provides intriguing features due to superradi-
ance where the scalar field extracts energy from a charged
or rotating black hole [9].
Motivated by recent research of gedanken experiments of
destroying the event horizon with test particles and fields,
we try to investigate the destruction of the event horizon
of the nonsingular rotating black hole in loop quantum
gravity and explore the effects of the quantum parameter
on the destruction of the event horizon.

The metric of the
quantum-corrected nonsingular

black hole
Starting at a static spherically symmetric black hole in
loop quantum gravity as a seed metric, Brahma et al.
constructed a rotating black hole in loop quantum gravity
using the revised Newman-Janis algorithm. The metric
captures universal features of an effective nonsingular ro-
tating black hole in loop quantum gravity [10]. The metric

for the black hole in Boyer-Lindquist coordinates can be
written in the form [10]

ds2 = −
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where the metric functions are
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and x = r/(
√
8AλMB), where MB corresponds to the

Dirac observable in the model, and Aλ = (λk/M
2
B)

2/3/2

is a nonnegative dimensionless parameter, where the quan-
tum parameter λk originates from holonomy modifications
and it is directly related to the fundamental area gap in
the theory [10].
The metric approaches a Kerr spacetime asymptotically
at r → +∞. When the quantum parameter Aλ vanishes,
the metric describes a Kerr spacetime. Different from a
Kerr spacetime, the classical singular ring is replaced by a
timelike transition surface induced from nonperturbative
quantum correction and the spacetime is regular every-
where for nonvanishing quantum parameter Aλ.
The mass and angular momentum of the black hole are

MADM = lim
r→∞M = MB, (5)

J = lim
r→∞Ma = MBa. (6)

The event horizon rh of the nonsingular rotating black
hole in loop quantum gravity is defined by the equation
∆ = 0, i.e., √√√√√√√√√√√√8Aλ +

r2h
M2

B
= 1 ±

√√√√√√√√√√√1−
a2

M2
B
, (7)

where the plus sign corresponds to the event horizon, while
the minus sign to the inner horizon. Evidently, the number
of the horizon strongly depends on the quantum parame-
ter Aλ and the spin parameter a. Figure 1 illustrates the
dependence of the number of horizons on the parameters
Aλ and a.
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Figure 1: The dependence of the number of horizons on
the parameters Aλ and a. The numbers of horizons in
regions I, II, III, and IV are 0, 1, 2 and 0, respectively.
Region I has been almost ruled out by the shadow size of
M87* measured by EHT.

Region III characterized by a small quantum parameter
describes a rotating black hole with two horizons. From

the observational implications of the shadow cast by this
object, region III is the most physically relevant one for
considering rotating black holes [10]. We focus on re-
gion III for considering the possibility of destruction of the
event horizon.

Destroy the event horizon with a
test particle

For a ≤ MB, the metric (1) describes a black hole; while
for a > MB, it describes a rotating spacetime without
event horizon.
To overspin the black hole, we only need to throw particles
or fields with large angular momentum into the extremal
or near-extremal black hole to make the final composite
object with J ′ > M ′2

B .
A particle with mass m moving in the nonsingular rotat-
ing loop quantum gravity spacetime is described by the
geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0, (8)

which can be derived from the Lagrangian

L =
1

2
mgµν

dxµ

dτ

dxν

dτ

=
1

2
mgµνẋ

µẋν.
(9)

We drop the particle from rest at infinity in the equator,
then the particle will move in the equatorial plane. The
energy δE and angular momentum δJ of the particle are

δE = −Pt = −
∂L

∂ṫ
= −mg0νẋ

ν, (10a)

δJ = Pϕ =
∂L

∂ϕ̇
= mg3νẋ

ν. (10b)

In the process of absorbing the particle, the changes of
the mass and angular momentum of the black hole are

MB → M ′
B = MB + δE, (11)

J → J ′ = J+ δJ. (12)

The motion of the particle outside the event horizon
should be timelike and future directed, which is

dt

dτ
> 0. (13)

If the particle enters the black hole, it must cross the event
horizon. On the event horizon of the nonsingular rotating
black hole, the condition becomes

δJ <
a2 + b2(rh)

a
δE =

δE

ΩH
. (14)

Intuitively, a particle with too large angular momentum
just “miss” the black hole due to the centrifugal repulsion
force. Thus, for the particle to be captured by the black
hole, the angular momentum of the particle must satisfy

δJ < δJmax =
δE

ΩH
. (15)

On the other hand, to overspin the black hole, we need

J+ δJ > (MB + δE)2, (16)

which is

δJ > δJmin = δE2 + 2MBδE+ (M2
B − J). (17)

If the two conditions (15) and (17) are satisfied simultane-
ously, the event horizon of the black hole can be destroyed
and the inner structure of the nonsingular rotating black
hole in loop quantum gravity can be exposed to outside
observers.
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We find that both an extremal and near-extremal
nonsingular rotating black hole in loop quantum gravity
cannot be destroyed. Furthermore, we find that the
larger the quantum parameter Aλ, the more difficult for
the horizon to be destroyed. This means that the
existence of the quantum parameter Aλ makes the event
horizon of the extremal nonsingular rotating black hole
more difficult to be overspun by test particles. Evidently,
it is consistent with previous research that the centrifugal
repulsion force is just great enough to prevent particles
destroying the extremal black hole from being captured,
and the quantum parameter Aλ increases this tendency.

Overspinning the black hole with
a test scalar field

Another method to destroy the event horizon is shoot-
ing a scalar field with large angular momentum into the
extremal or near-extremal black hole. In this section, we
check the possibility of destroying the event horizon of the
nonsingular rotating black hole in loop quantum gravity by
shooting a massive classical scalar field into the extremal
or near-extremal black hole and investigate the effect of
the quantum parameter Aλ on the destruction of the event
horizon.
We consider the scattering of a massive scalar field by the
nonsingular rotating black hole. The massive scalar field
Ψ with mass µ minimally coupled to the gravity is gov-
erned by the Klein-Gordon equation

∇µ∇µΨ− µ2Ψ = 0, (18)
We impose ingoing boundary condition near the event
horizon. The scalar field near the event horizon is
Ψ = exp [−i (ω−mΩH) r∗]Slm(θ)e

imϕe−iωt. (19)
Having the solution for the scalar field near the event hori-
zon, we can calculate the changes of the black hole pa-
rameters through the fluxes of the energy momentum for
the scalar field.
We shoot a monotonic scalar field with mode (l,m) into
the black hole. From the energy momentum tensor of the
scalar field
Tµν = ∂(µΨ∂ν)Ψ

∗ −
1

2
gµν

∂αΨ∂αΨ∗ + µ2Ψ∗Ψ
 , (20)

we can get the changes of the black hole parameters dur-
ing a small time interval of the scattering, which is

dE = ω(ω−mΩH)
b2(rh) + a2

 dt, (21a)
dJ = m(ω−mΩH)

b2(rh) + a2
 dt. (21b)

Without loss of generality, we consider a small time inter-
val dt. For a long time scattering process, we can divide
it into a series of small time intervals and investigate each
time interval individually only by changing the black hole
parameters.

In the scattering process, an extremal or near-extremal
black hole with mass MB and angular momentum J ab-
sorbing a test scalar field with energy dE and angular
momentum dJ becomes a composite object with mass
M ′

B and angular momentum J ′. To check whether the
black hole is destroyed and hence expose its inner struc-
ture to outside observers, we only need to check the sign
of M ′2

B − J ′. If it is negative, there is no event horizon
and the black hole is destroyed. Otherwise, the composite
object is still a black hole.
After the scattering, we have

M ′2
B − J ′ = (MB + dE)2 − (J+ dJ)

=
M2

B − J
 + 2MBdE− dJ.

(22)

For an initial extremal nonsingular rotating black hole with
M2

B = J, the above equation becomes
M ′2

B − J ′ = 2m2MB×

ω

m
−

1

2MB



ω

m
−ΩH


b2(rh) + a2

 dt.
(23)

The angular velocity of the extremal nonsingular rotating
black hole can be written as

ΩH =
a

a2 + b2(rh)
=

1

2MB(1− 3Aλ)
≥ 1

2MB
. (24)

The equality holds only for vanishing quantum parameter,
which corresponds to the angular velocity of an extremal
Kerr black hole. Due to the loop quantum gravity correc-
tion, the angular velocity shifts from that of an extremal
Kerr black hole. This has profound implications on the
scattering of a scalar field for the nonsingular rotating
black hole in loop quantum gravity.
From Eq. (23), it is clear that there is a small range of
wave modes to destroy the event horizon due to the an-
gular velocity shifting from that of the Kerr black hole,
and the larger the quantum parameter Aλ, the wider the
range of the wave modes can overspin the extremal black
hole. The range of wave modes shrinks to zero for vanish-
ing quantum parameter Aλ, which shows that an extremal
Kerr black hole cannot be destroyed by a scalar field.
Similarly, a near-extremal black hole can also be destroyed
by test scalar field.

Summary and conclusions
In this work, we investigated the possibility of destroying
the event horizon of a nonsingular rotating black hole in
loop quantum gravity by a test particle and a scalar field,
and analysed the effect of the quantum parameter Aλ on
the destruction of the black hole event horizon.
For the test particle injection, both extremal and near-
extremal nonsingular rotating black holes cannot be over-
spun. The larger the quantum parameter Aλ, the harder
the black hole to be destroyed by a test particle. This
differs from nonsingular black holes in general relativity,

for which a near-extremal black hole can be destroyed by
a test particle. It seems that the quantum parameter Aλ

acts as a protector to prevent a black hole to be destroyed
by a test particle.
However, for the test scalar field scattering, both extremal
and near-extremal nonsingular rotating black holes can be
destroyed. For an extremal black hole, the angular veloc-
ity shifts from that of the extremal Kerr black hole due to
the loop quantum gravity correction. This provides a small
range of wave modes to destroy the event horizon of the
black hole in loop quantum gravity, and the range shrinks
to zero for vanishing quantum parameter Aλ. The result
shows that the quantum parameter makes the black hole
event horizon more easy to be destroyed by a test scalar
field
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