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Abstract
For a stationary, axisymmetric, asymptotically flat,
ultra-compact [i.e. containing light-rings (LRs)] ob-
ject, with a Z2 north-south symmetry fixing an equa-
torial plane, we establish that the structure of timelike
circular orbits (TCOs) in the vicinity of the equatorial
LRs, for either rotation direction, depends exclusively
on the radial stability of the LRs. Thus, an unstable
LR delimits a region of unstable TCOs (no TCOs)
radially above (below) it; a stable LR delimits a region
of stable TCOs (no TCOs) radially below (above) it.

Circular geodesics on the equatorial plane
We assume a stationary, axisymmetric, asymp-
totically flat, 1+3 dimensional spacetime,
(M, g), describing an ultracompact object that
may, or may not, have an event horizon.
Using the symmetries together with some gauge
choices (see [1] for more details), one can write
a generic metric as,

ds2 = gttdt
2 + 2gtϕdtdϕ+ gϕϕdϕ

2

+gr rdr
2 + gθθdθ

2 . (1)

We further impose a north-south Z2 symmetry,
and shall look for circular orbits on the equatorial
plane, θ = π/2.
Test particle motion in the generic geometry (1)
is ruled by the effective Lagrangian (dots denote
derivatives with respect to an affine parameter),

2L = gµνẋµẋν = ξ , (2)

where ξ = −1, 0,+1 for timelike, null and space-
like geodesics, respectively. Introducing the two
integrals of motion associated to the Killing vec-
tors, the energy, E, and the angular momentum,
L, we can defined an effective potential Vξ(r)
through the Lagrangian, as,

Vξ(r) ≡ gr r ṙ 2 = ξ +
A(r, E, L)

B(r)
, (3)

where A(r, E, L) ≡ gϕϕE2 + 2gtϕEL + gttL2,
and B(r) ≡ g2tϕ−gttgϕϕ > 0. A particle will fol-
low a circular orbit at r = r cir iff the following two
conditions are simultaneously obeyed throughout
the orbit:

Vξ(r
cir) = 0 , (4)

V ′ξ(r
cir) = 0 , (5)

where prime denotes radial derivative. Moreover,
the radial stability of such orbit is determined by
the sign of V ′′ξ (r

cir).A positive (negative) value
implies a unstable (stable) circular orbit.

TCOs. For timelike particles, ξ = −1, condi-
tion (4) together with the angular velocity Ω =
dϕ/dt = ϕ̇/ṫ, determine the energy and angu-
lar momentum for circular orbits in terms of the
angular velocity as,

E± = −

[
gtt + gtϕΩ±√

β±

]
r cir

, L± =

[
gtϕ + gϕϕΩ±√

β±

]
r cir

,

(6)
where we have defined

β± ≡
[
−gtt − 2gtϕΩ± − gϕϕΩ2±

]
r cir
. (7)

Then, the remaining condition (5) yields Ω± in
terms of the derivatives of the metric functions
at r cir,

Ω± =

−g′tϕ ±
√
(g′tϕ)

2 − g′ttg′ϕϕ
g′ϕϕ


r cir

. (8)

One can study the stability of the TCO by using
the above results checking the sign of V ′′−1(r

cir).

LRs. For null particles, ξ = 0, circular orbits
are LRs. Condition (4) is a quadratic equation
for the inverse impact parameter, σ± ≡ E±/L±,
whose solutions are,

σ± =

[
−gtϕ ±

√
B(r)

gϕϕ

]
LR

. (9)

The second condition (5), on the other hand,
determines LR’s radial coordinate. The stability
of the LRs is evaluated by checking the sign of
V ′′0 (r

LR).

TCOs in the vicinity of LRs
Let’s assume the existence of a LR. We wish to
determine if TCOs exist in its immediate neigh-
bourhood and whether they are stable or unsta-
ble.
First, we connect the description of timelike and
null orbits. The connection amounts to observe
that LRs are determined by

β±
∣∣
LR = 0 , and noting that Ω±

∣∣
LR = σ± .

(10)
Indeed, from (7), the condition β± = 0 becomes
equivalent to (4) with ϵ = 0, and (5), also with
ϵ = 0, is solved by virtue of (8).
The function β± will guide us in the connection
between LRs and TCOs. From the continuity of
β±, one expects that (generically) in the neigh-
bourhood of the LR β± may be negative. In that
case the energy and angular momentum (6) of a

timelike particle become imaginary: such region
will not contain TCOs.
We will now see that there is always one side in
the immediate vicinity of a LR, wherein TCOs are
forbidden, whose relative location with respect to
the LR depends solely on the stability of the lat-
ter. For that we perform a first order Taylor
expansion of β± around the LR. Using the results
regarding β± = 0, one can show that,

β±(r) ∝ V ′′0 (r LR
± )δr +O(δr 2) , δr ≡ r − rLR

(11)
Thus, the sign of β±, and hence the location
of the regions where TCOs are forbidden, is de-
termined by the signs of V ′′0 (r

LR
± ) (stability of the

LR) and δr (upper or lower neighbourhood of the
LR).
We can extend this analysis further by study the
stability of the region where it is possible to
have TCOs. For that, we consider the stabil-
ity of TCOs by examine V ′′−1(r). This quantity
diverges on LRs, since E± and L± diverge when
β±(r

LR
± ) → 0, by virtue of (6). Approaching

the LR from the side wherein TCOs are allowed
(β± > 0), the stability diverges as,

V ′′−1(rLR) ∝
V ′′0 (rLR)

β±(rLR)
(12)

Thus, when approaching the LR from the allowed
region: TCOs are unstable (stable) if the LR is
unstable (stable).
In the end, we conclude that the radial stability of
a LR determines the localisation and radial sta-
bility of TCOs surrounding it. Fig. 1 summarises
the main results.
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Figure 1: Structure of the equatorial TCOs in the
vicinity an unstable (top panel) and stable (bottom
panel) LR. Adapted from [1].
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