Physical black holes and their properties

Daniel Terno

School of Mathematical \& Physical Sciences

Mann, Murk, DRT,
Black holes and their horizons in semiclassical and modified theories of gravity Int J Mod Phys D 312230015 (2022) arXiv:2112.06515

assumptions

1.The classical spacetime structure is still meaningful and is described by a metric $g_{\mu v}$.
2. Classical concepts, such as trajectory, event horizon or singularity can be used.
3. The metric is modified by quantum effects. The resulting curvature satisfies the semiclassical self-consistent equation

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu} \begin{aligned}
& 8 \pi\left\langle\hat{T}_{\mu \nu}\right\rangle_{\omega} \\
& +E_{\mu \nu}
\end{aligned}
$$

4. Dynamics of the collapsing matter is still described classically using the self-consistent metric
not assumed: global structure, singularity, types of fields, quantum state, presence of Hawking radiation

Carballo-Rubio, Di Filippo, Liberati, Visser, Phys Rev D 101, 084047 (2020)

0
11
\therefore

(i) a light-trapping region forms at a finite time of a distant observer
(ii) curvature scalars [contractions of the Riemann tensor] are finite on the boundary of the trapped region

spherical symmetry

structure

$$
d s^{2}=-e^{2 h} f d t^{2}+f^{-1} d r^{2}+r^{2} d \Omega_{2}
$$

\square circumference: $2 \pi r$
\square physical time at infinity: t

$$
f=1-2 M(t, r) / r
$$

$$
2 M(t, r) \equiv C(t, r)
$$

MS invariant mass

Schwarzschild radius

$$
\max r_{g}=C\left(t, r_{g}\right)
$$

$$
\mathfrak{T}:=\left(\left(\tau^{r}\right)^{2}+\left(\tau_{t}\right)^{2}-2\left(\tau_{t}^{r}\right)^{2}\right) / f^{2}
$$

$$
\mathrm{T}:=\left(\tau^{r}-\tau_{t}\right) / f
$$

+ regular terms

All three components go to zero or diverge in the same way
Einstein equations
$\partial_{r} C=8 \pi r^{2} \tau_{t} / f$,
$\partial_{t} C=8 \pi r^{2} e^{h} \tau_{t}^{r}$,
$\partial_{r} h=4 \pi r\left(\tau_{t}+\tau^{r}\right) / f^{2}$

$$
\underbrace{\lim _{r \rightarrow r_{g}} \tau_{a} \sim\left\{\begin{array}{l}
\pm \Upsilon^{2} f^{0} \\
\tau_{a}(t) f^{k}
\end{array}\right.}_{k=0,1^{*}}
$$

$$
\lim _{r \rightarrow r_{g}} \tau_{t}=\lim _{r \rightarrow r_{g}} \tau^{r}=-\Upsilon^{2} \quad k=0
$$

spherical symmetry

metrics

1. The limiting form (close apparent horizon) of dynamical metrics is almost uniquely defined (both $k=0$ and $k=1$).

$C=r_{g}-4 \sqrt{\pi r_{g}^{3}} r \sqrt{x}+\ldots \quad h=-\frac{1}{2} \ln \frac{x}{\xi}+\ldots \quad \triangleleft k=0$

$$
k=1>\quad C=r-c_{32} x^{3 / 2}+\ldots \quad h=-\frac{3}{2} \ln \frac{x}{\xi}+\ldots
$$

$r_{g}^{\prime}<0>(v, r)$
BH solutions

Nice coordinates: advanced null (black hole); retarded null (white hole)
2. BH parameters are related via evaporation rate

$$
\frac{d r_{g}}{d t}=-4 \sqrt{\pi r_{g} \xi} \curlyvee
$$

$$
\frac{d r_{g}}{d t}=-\frac{c_{32} \xi^{\frac{3}{2}}}{r_{g}}
$$No static $k=0$ solutionsReissner-Nordström many static regular BH are examples of $k=1$ solutionsPopular dynamic regular BH models are $k=0$ solutions (and many are not fully consistent)

