## Deep learning for intermittent gravitational waves Takahiro S Yamamoto (Nagoya)

Collaboration with Sachiko Kuroyanagi (Madrid, Nagoya), Guo Chin Liu (Tamkang)

Abstract

- Many black hole binary mergers that can not be detected as individual events will form a stochastic gravitational-wave background. If the merger rate is low so that each waveform is not overlapped, the stochastic gravitational-wave background is expected to have non-Gaussianity.

- We propose the use of deep learning to capture the non-Gaussianity. We demonstrated our method for toy model of stochastic background and showed the neural network can extract the non-Gaussianity.

Instituto de

Física Teórica

#### Astrophysical SGWB Continuous or intermittent

Ensemble of BBH signals is considered to emerge as stochastic background.

Ensembles of BBH signals have intermittency. (Rarely overlapped)

Considering the intermittency is expected <sup>-</sup> to improve the detection efficiency.

Duty cycle

$$\xi \sim R_{\rm event} T_{\rm dur}$$

 $R_{\text{event}}$  :event rate,  $T_{\text{dur}}$  :burst duration



LIGO/Virgo, PRL120, 091101 (2018)

# Deep learning application Artificial neural network (ANN) in a nutshell

e.g. Goodfellow et al., "Deep learning" as a textbook

✓ ANN is inspired by the structure of a human brain, mimicking the way that biological neurons signal to one another.

 $\checkmark$  Highly non-linear function controlled by many parameters.

✓ ANN's parameters are optimized using a training dataset before we apply ANN to test data or a real event.





https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160

# **Toy model of SGWB** Signal model

Drasco & Flanagan, PRD67, 082003 (2003)

- A burst is modeled by a peak at one time bin
- Signal model

$$p(s^k | \xi, \alpha^2) = \xi \frac{1}{\sqrt{2\pi\alpha^2}} \exp\left[-\frac{(s^k)^2}{2\alpha^2}\right] + (1 - \xi)\delta(s^k)$$



 $\xi \in [0,1]$  :duty cycle, ( $\xi \rightarrow 1$  : Gaussian)  $\alpha^2$  : amplitude variance of each burst

#### **Results** Demonstration with toy model



Minimum SNR that the signal can be detected with 90% efficiency.

Scatter plot of true values vs predicted values of duty cycle and SNR.