
Abstract 

- Many black hole binary mergers that can not be detected as individual 
events will form a stochastic gravitational-wave background. If the merger 
rate is low so that each waveform is not overlapped, the stochastic 
gravitational-wave background is expected to have non-Gaussianity.  

- We propose the use of deep learning to capture the non-Gaussianity. We 
demonstrated our method for toy model of stochastic background and 
showed the neural network can extract the non-Gaussianity.
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Continuous or intermittent
Astrophysical SGWB

intersects a PI curve, then it has SNR ≥ 1 for the corre-
sponding observing run.
Although the stochastic background is dominated by

unresolvable sources, the energy-density spectra in Fig. 1
include contributions from the loudest, individually detect-
able events. Simulations of the astrophysical background
given the inferred rate and mass distribution indicate that
removing sources that are individually detectable by the
LIGO-Virgo network with a combined SNR > 12 has a
very small impact on the results. The detectable sources
have an even smaller effect than shown by the analysis in
[20], which considered only the population of loud, high-
mass sources. This highlights the fact that the spectrum is
dominated by low-mass systems, which are less likely to be
detected individually.
Different assumptions are possible on the various dis-

tributions that enter the calculation of ΩGW [Eq. (2)], such
as star formation rate, metallicity evolution, and delay
times. However, we have verified that variations on our
assumptions are contained within the Poisson band shown
in Fig. 1, consistent with the detailed study in [20].
Additionally, if some of the observed BBH systems were
of primordial (rather than stellar) origin, with a different
redshift distribution, their contribution to the stochastic
background spectrum could be weaker [46–48].
The right-hand panel of Fig. 1 shows the expected

accumulated SNR as a function of total observation time,
updated from [20]. For O1, which lasted approximately
4 months, we use the actual instrumental sensitivities of the
two LIGO detectors (Virgo was not yet operating at that
time) [21]. The second observing run (O2) was recently
completed and ran for approximately 9 months. For this run
we used typical sensitivities of 100 Mpc for Livingston and
60 Mpc for Hanford, assuming a duty cycle of 50%. We do
not include Virgo as it does not contribute significantly to
the sensitivity of stochastic searches in O2 due to the lower
range and one-month integration time. For the next planned
observing run (O3), and the following stages of sensitivity
improvements, we include Virgo and assume a 50% duty
cycle for each detector. Following [44], we assume O3 will
be 12 months long (2017–2018). We define the “near

design” phase (2019+) to be a 12-month run where Hanford
and Livingston operate at design sensitivity and Virgo at
late sensitivity. Lastly, we assume that the “design” phase
(2022+) will be 24 months and will have Hanford,
Livingston, and Virgo operating at design sensitivity.
These assumptions are broadly consistent with [44],
although we make specific assumptions about the duration
of each observing run for concreteness.
The median total background from a combined BBH and

BNS background may be identified with SNR ¼ 3, corre-
sponding to false alarm probability < 3 × 10−3, after
approximately 40 months of observing. In the most
optimistic scenario allowed by statistical uncertainties,
the total background could be identified after 18 months
or as early as O3. The most pessimistic case considered
here is out of reach of the advanced detector network but is
in the scope of third-generation detectors [49].
Although the BNS and BBH backgrounds have similar

energy densities, they have extremely different statistical
properties. To illustrate this, we plot a simulated strain time
series in Fig. 2 and show an example BNS (red) and BBH
(green) background. The BNS events create an approx-
imately continuous background consisting of a superposi-
tion of overlapping sources, since the duration of the

TABLE I. Estimates of the background energy density ΩGWðfÞ
at 25 Hz for each of the BNS, BBH, and total background
contributions, along with the 90% Poisson error bounds. We also
show the average time τ between events as seen by a detector in
the frequency band above 10 Hz, and the number of overlapping
sources at a given time λ. We quote the number given the median
rate and associated Poisson error bounds.

ΩGWð25 HzÞ τ [s] λ

BNS 0.7þ1.5
−0.6 × 10−9 13þ49

−9 15þ30
−12

BBH 1.1þ1.2
−0.7 × 10−9 223þ352

−115 0.06þ0.06
−0.04

Total 1.8þ2.7
−1.3 × 10−9 1244−8 15þ31

−12

FIG. 2. We present a simulated time series of duration 104 s
illustrating the character of the BBH and BNS signals in the time
domain. In red we show a simulated BNS background corre-
sponding to the median rate as shown in Fig. 1, and in green we
display the median BBH background. We do not show any
detector noise, and do not remove some loud and close events that
would be detected individually. The region in the black box, from
1800 to 2600 s, is shown in greater detail in the inset. The BNS
time series is continuous as it consists of a superposition of
overlapping signals. On the other hand the BBH background (in
green) is popcornlike, and the signals do not overlap. Remark-
ably, even though the backgrounds have very different structure
in the time domain, the energy in both backgrounds is comparable
below 100 Hz, as seen in Fig. 1.
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Ensemble of BBH signals 
is considered to emerge as 
stochastic background. 

Ensembles of BBH signals have 
intermittency. (Rarely overlapped) 

Considering the intermittency is expected 
to improve the detection efficiency.

Revent :event rate, Tdur :burst duration

ξ ∼ ReventTdur

Duty cycle



Artificial neural network (ANN) in a nutshell
Deep learning application

✓ANN is inspired by the structure of a human brain, mimicking 
the way that biological neurons signal to one another. 

✓Highly non-linear function controlled by many parameters. 

✓ANN’s parameters are optimized using a training dataset before 
we apply ANN to test data or a real event.

https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160 https://developer.nvidia.com/blog/digits-deep-learning-gpu-training-system/

e.g. Goodfellow et al., “Deep learning” as a textbook



Signal model
Toy model of SGWB

Drasco & Flanagan, PRD67, 082003 (2003)

• A burst is modeled by a peak at one time bin 

• Signal model

p(sk |ξ, α2) = ξ
1

2πα2
exp [−

(sk)2

2α2 ] + (1 − ξ)δ(sk)

ξ ∈ [0,1] :duty cycle, ( ξ → 1 : Gaussian)
α2 : amplitude variance of each burst

2

FIG. 1: Example of ensemble of gravitational wave bursts.
We see four bursts at the time 5, 9, 13, and 18. Each burst is
represented by a single peak.

II. SIGNAL MODEL

In this work, we use the result achieved by Drasco &
Flanagan [4] as a reference. They adopted various as-
sumptions for the signals, the detectors, and noise prop-
erties. First, they assume two detectors that are co-
located and aligned. Because of this approximation, the
observed astrophysical signals, if they exist, have identi-
cal waveforms. Second, the detector noises are station-
ary, Gaussian, and statistically independent. In [4], the
white noise is assumed, and the variances are set to be
equal for two detectors. Finally, each astrophysical burst
is represented by a sharp peak that has support only on a
discretized time grid. Suppose the duration of the burst
is shorter than the time resolution of the detector. If
the event rate of bursts is not much high, gravitational
wave bursts can be assumed not to overlap each other. In
that case, the observed value at the burst arrival time is
the averaged amplitude throughout the neighboring time
grids.

A strain data obtained by each detector is denoted
by h

k
i , where i = 1, 2 discriminates detectors, and k =

1, 2, · · · , N is a time index. We use s
k to denote the

signal. Including detector noise data which is denoted
by n

k
i , we can express the strain data of the i-th detector

as

h
k
i = s

k + n
k
i . (2.1)

The detector noise is generated from Gaussian distribu-

tion, that is,

p(nk
i ) = N (nk

i ; 0, �i) . (2.2)

N (x; µ, �) is a one-dimensional Gaussian distribution
with a mean µ and a standard deviation �, i.e.,

N (x; µ, �) =
1p

2⇡�2
exp


� (x � µ)2

2�2

�
. (2.3)

Due to the assumption of stationarity and white, the vari-
ance � is constant in time. Because we also assume that
the noise of two detectors have the same variance, we set

�1 = �2 = 1 , (2.4)

throughout this paper. An ensemble of bursts models
a non-Gaussian stochastic background signal. The du-
ration of each burst is supposed to be shorter than the
sampling time width. Then, the strain value at the time
when the burst arrives is determined by the burst’s power
averaged over the time interval between the sampled time
step. We assume that the interval of bursts is much
longer than the burst duration. Then, the probability
density function of the strain value at time k can be mod-
eled by

p(sk) = ⇠N (sk; 0, ↵) + (1 � ⇠)�(sk) . (2.5)

⇠ is called the (astrophysical) duty cycle and shows how
frequently bursts occur. ⇠ takes values in the range 0 
⇠  1. The case of ⇠ = 1 is equivalent to Gaussian
stochastic gravitational waves. On the other hand, it is
reduced to the absence of the signal for ⇠ = 0. A signal
exhibits non-Gaussianity as ⇠ decreases. Figure. 1 shows
an example of signals with the signal model (2.5).

III. NON-GAUSSIAN STATISTIC

The likelihood ratio between the null hypothesis and
the alternative hypothesis can be used as a detection
statistic. Under the assumption of the noise model
Eq. (2.2) and the signal model Eq. (2.5), the likelihood
ratio can be reduced to
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Demonstration with toy model
Results

9

FIG. 6: Minimum detectable SNR with 90% detection proba-
bility for the non-Gaussian statistic, two convolutional neural
networks, and the residual network. The false alarm rate is
set at 1%. The black squares are the non-Gaussian statistic,
the blue squares are the shallower CNN, the orange circles
are the deeper CNN, and the green circles are the residual
network. For visibility, the dots are slightly shifted in the
horizontal direction. The error bar shows the standard devia-
tion of ⇢90% for four independent runs. The residual network
outperforms the non-Gaussian statistic.

estimation to the classification problem. We assume that
the range of the duty cycle is log10 ⇠ 2 [�4, 0] and divide
it into four subbands having the interval of � log10 ⇠ = 1.
The neural network is trained to predict which subband
the duty cycle of the simulated data is located within.
In the second approach, the neural network is trained to
output the estimated values of the duty cycle and the
SNR. This approach is more direct to parameter estima-
tion than the first approach. In the rest of this section,
we assume the range of SNR as ⇢ 2 [1, 60].

A. First approach: classify duty cycle

In the first approach, we use the residual network with
the same structure as the one shown in Table. III and
Fig. 4, but the last fully-connected layer and the soft-
max layer have four-dimensional outputs. The training
procedure is as follows. The weight update is repeated
for 105 times. We employ the same normalization scheme
as the detection problem that is given in Eq. (5.5). The

FIG. 7: Confusion matrix in the unit of percent. Each row
shows the true class, and each column shows the predicted
class. Each class is labeled by the integer {1, 2, 3, 4} and
they corresponds to log10 ⇠ 2 [�1, 0), [�2,�1), [�3,�2), and
[�4,�3), respectively. The color shows the number of test
data corresponding the true class and the predicted class.

duty cycle is sampled from the log uniform distribution
on ⇠ 2 [10�4, 100], and the SNR is sampled from the
uniform distribution on ⇢ 2 [1, 60]. The input data is
labeled by the four classes depending on their values of
the duty cycles. We assign the class index by following
the rule

class index =

8
>>><

>>>:

1 (�1  log10 ⇠ < 0)

2 (�2  log10 ⇠ < �1)

3 (�3  log10 ⇠ < �2)

4 (�4  log10 ⇠ < �3) .

(6.1)

The batch size is 512, and the update algorithm is Adam
with the learning rate of 10�5.
The trained neural network is tested by four datasets

consisting of 512 data corresponding to the di↵erent
classes. As well as the training data, SNRs are uniformly
sampled from the range [1, 60] for all test datasets. Fig-
ure. 7 presents the confusion matrix of the classification
by the residual network. If all test data are perfectly
classified, the confusion matrix becomes diagonal. In
other words, the o↵-diagonal elements present misclassi-
fications. From Fig. 7, we find that 93.1% of test data are
classified to the correct class regardless of the true values
of the duty cycle. Therefore, we can conclude that the
residual neural network can learn the di↵erences in the
duty cycle with the resolution of an order of magnitude.
Now, we further study the misclassified data. Figure. 8

shows the scatter plot of misclassified data on (log10 ⇠,
⇢) plane. It clearly shows that the misclassified data
have the duty cycles located in the marginal region of the
neighboring classes. Figure. 9 shows the histogram of the
maximum values of pi. If the neural network predicts the
class with high confidence, the predicted probability for
one class is much close to unity, and the others are quite

} Deep learning
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FIG. 8: Distribution of the misclassified data on (log10 ⇠, ⇢)
plane. Color shows the maximum value among {pi}i=1,2,3,4.
If it is close to unity, it means that the neural network mis-
classifies the data with high confidence. The duty cycles of
misclassified data are clearly concentrated at the boundary of
the di↵erent classes. As for the SNR distribution, it seems
uniform; there’s no dependence on the SNR.

FIG. 9: Histograms of the maximum values of the predicted
probabilities. Blue and orange lines show the misclassified
data and the correctly classified data, respectively. For the
misclassified data, the maximum probabilities are almost uni-
formly distributed, while the distribution of the maximum
probabilities exhibits a sharp peak at 1.0 for correctly classi-
fied events.

small. In contrast, the neural network would predict the
probabilities that some (or all) elements have moderate
probabilities if the neural network has no confidence. The
histogram of max pi indicates how confidently the neural
network predicts the class for the test dataset. We can
see a clear di↵erence between the histograms for the cor-
rectly classified events and the misclassified events. For
most of the correctly classified events, the probability
of close to 1 is assigned. However, for the misclassified
events, the distribution of max pi is almost flat. It shows
that the neural network gives the wrong answer with low

FIG. 10: Scatter plots of predicted values and true values
of log10 ⇠ (left) and ⇢ (right). The dashed line indicates the
equality of the prediction and the target. If the neural net-
work prediction works well, the data points locate along with
the diagonal line. For both log10 ⇠ and ⇢, the neural network
seems to predict these well.

confidence. It is consistent with Fig. 8.

B. Second approach: estimate duty cycle and SNR

In another approach, we train the neural network to
predict the value of the duty cycle and the SNR. We use
the same structure of residual network as the one shown
in Table. III and Fig. 5 with removing the soft-max layer
and changing the output dimension to 2. The weight
update is repeated for 105 times. The loss estimation
of the validation data is inserted for every 50 iterations.
The injected parameters are normalized by

Q̂ =
2Q�Qmin �Qmax

Qmax �Qmin
, (6.2)

where Q = {log10 ⇠, ⇢} is the injected values. Qmin and
Qmax are the minimum and the maximum values of the
training range, respectively. By this normalization, Q̂
has the range [�1, 1]. The outputs of the neural net-
work directly correspond to the estimated values of Q̂.
The duty cycle is sampled from the log uniform distribu-
tion on ⇠ 2 [10�2, 100] and the SNR is sampled from the
uniform distribution on ⇢ 2 [1, 60]. We assign the nor-
malized values of log10 ⇠ and ⇢ to each input data. We
use the L1 loss (4.11) as the loss function. We set the
batch size to 512. The update algorithm is Adam with
the learning rate of 10�5.
We test the trained residual network with the newly-

generated data with the parameters sampled from the
same distributions as one of the training data. Figure. 10
is the scatter plot of the true values and the predicted
values. It shows that for most data, the prediction seems
well except for some outliers.
To check how much the performance depends on SNR,

we test the neural network with various test data having

Minimum SNR that the signal can be 
detected with 90% efficiency.

Scatter plot of true values vs predicted values 
of duty cycle and SNR.


