Probing Quantum Correlations with a Temporal Superposition

Laura J. Henderson

In collaboration with: A. Belenchia, E. Castro-Ruiz, C. Budroni, M. Zych, Č. Brukner, and R. B. Mann Phys. Rev. Lett. 125, 131602 (2020)

23rd International Conference on General Relativity and Gravitation, Beijing Convention Center, Beijing, China

Indefinite Causal Order

Quantum gravity (uniting general relativity and quantum mechanics) may lead to an indefiniteness in causal structure^{1,2}.

- Taking this seriously allows for situations where it cannot be determined if operation A came before operation B or vice-versa.
- Both situations could occur in superposition
 ⇒ the order is indefinite.
- Detection? Use a particle detector!
- We use a quantum controlled switch so that 2 UDW detectors interact with the field in a coherent superposition of "A before B" and "B before A".

¹O. Oreshkov, F. Costa, and Č. Brukner, Nat. Commun. 3, 1092 (2012)

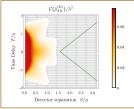
²G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, Phys. Rev. A 88, 022318 (2013)

Quantum Fields on Curved Spacetimes and Entanglement Harvesting

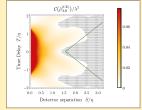
- Quantum fields on curved spacetimes: treats both the quantum field and gravitational effects with equal physical significance
 - Provides clues into what can be expected from a "true" theory of quantum gravity.
- The UDW^{3,4} detector model (local two level quantum system) provides an operational approach to probing properties of quantum fields and structure of spacetime.
 - Field entanglement can be swapped to initially separable detectors^{5,6} ("entanglement harvesting"⁷).
 - The resulting entanglement is sensitive to the properties of the field and underlying spacetime.

³W. G. Unruh, Phys. Rev. D, vol. 14, pp. 870–892, 1976

⁴B. S. DeWitt, Cambridge University Press, 1979


⁵A. Valentini, Phys. Lett. A, 153:321 (1991)

⁶B. Reznik, Found. Phys., 33:167 (2003)

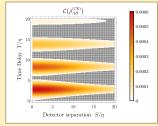

⁷G. Salton, R. B. Mann, and N. C. Menicucci, New J. Phys., 17:035001(2015).

Result: Entanglement Enhancement

Pointlike detectors couple to the field with **compact switching**: $\chi(t) = \cos(2(t - T_i)/\eta), |t - T_i| \le \pi \eta/2$ where $T_i = \pm T/2$ (depending on the output of the the control).

Probablistic mixture (Definite Causal Order)

Coherent superposition (Indefinite Causal Order)


The green lines mark spacelike separation (to the right).

- Entanglement harvesting (EH) is now possible in regions of spacelike separation.
- Also: significant enhancement in regions where EH is possible.

Result: Entanglement Despite a No-Go Theorem

Gaussian smeared detectors couple to the field with **instantaneous switching**: $\chi(t) = \eta \delta(t - T_i)$ where $T_i = \pm T/2$ (depending on the output of the the control).

Coherent superposition (Indefinite Causal Order) A no-go theorem forbids entanglement harvesting using instantaneous switching^{8,9}.

- In our setup, detectors are on only once in each branch of the superposition
- But we still see entanglement harvesting!
- The interaction is complex enough to avoid the no-go theorem.

⁸P Simidzija and E. Martín-Martínez Phys. Rev. D 96, 065008 (2017)
 ⁹P Simidzija and E. Martín-MartínezPhys. Rev. D, 97:125002 (2018)