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Abstract: This poster is devoted to study the circular motion of neutral test particles orbiting near Kerr—Newman black hole in the presence of quintessential dark energy and cosmological constant We limit our analysis to the
equatorial plane and explore the properties of both time-like and null geodesics. We also discuss the stable regions with respect to the horizons, radius of photon sphere and the so called static radius. We have shown that the stable
points are always less than the static radius while they exceed the radius of photon orbit. The energy extraction, negative energy state and energy gain during the Penrose process is also discussed. It is found that more energy can be
gained during the Penrose process in the presence of dark energy as compared to the charge and spin of the said black hole. This research work has been published in [Iftikhar, S. and Shehzadi, M.: Eur. Phys. J. C 79(2019) 473].

Equations of Motion

Null Geodesics Time-like Geodesics

Here, we discuss the case of null geodesics, i.e., € = 0 in
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Table 1: Photon orbits 7, (direct rotating) for w = —=.
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Table 2: Photon orbits 7,,> (counter rotating) for w = —%
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Table 3: Photon orbits 7,,1 (direct rotating) for w = —1.
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Table 4: Photon orbits 7,,2 (counter rotating) for w = —3.
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Analysis of The Effective Potential

The radial equation of motion can be written as [Misner, CW., Thorne, K.S. and Wheeler, J.A.
Gravitation (W.H. Free- man, New York, 1973)]
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Analysis of the Radil

Table 5: Static radius for w = = Table 6: Static radius for w = -'71-

Uess =

The effective potential must attain minimum values for the case of stable circular orbits 0 | 53.4522 53.4072 0 [39.9991 46.3992
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Plots of The Effective Potential 0.5 | 18.1311 4.4032 0.5 | 35.4053 8.37896
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Table 7: Inner (rj-) and outer (1) for w = <. Table 8: Inner (1) and outer () horizons for w = '71
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Table 9: Cosmological horizon r, for w = = Table 10: Cosmological horizon . for w = =

e | Q| ; el o Q] n | a ‘.

2 9 102 0
4109 0 | 4x10° 151911 x 10° 0 [1998x10%| 0 [1998x10*| 0 | 151911 x 10°
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Study of Stable Regions

In view of flgures 1-2 and using tables 1-10 e For the variation of (), the stable points (r = 2.67) lie in the region In view of f|gure5 3-4 and using tables 5-10
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e For the variation of L, the stable points (r = 0.42,0.6,0.75,0.8) lie in r =~ 0.7 and r =~ 1.65 lie in the region a = 0,0.0005,0.05 and 75 < Thi < Tpo, < T < Tpoy < Ts < 7T, when

=2 = _9 1 w= S, a=0.16
3 2 The < Thy <T < Tpoy < Tpoy <Ts <Te, When w = == and w = 5=

the region 7 < rp. <17 < 14 < 7. When w =
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The Penrose Process The Original Penrose process The Original Penrose Process

Inserting a® |, a® and a(®, we obtain
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The particle which escapes to infinity has more

energy than the original particle E®) = 1. Thus the
gained energy (AE) can be written as

Following [Chandrasekhar, S.: The Mathematical Theory of Black
Holes (Oxford University Press, 1983)], we study the Penrose
process for KNdQ BH. Using the radial equation, we get
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Figure > An illustration of Penrose process.

Solving the above equation for £ and L, we have
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At the event horizon, we have
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The following identity has been used to find the above results
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We consider E = 1 (with unit rest mass at infinity) and the
positive sign of E which requires L < 0 for E <0 and
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Using the equation of E, we can write
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It is clear from the above inequality that L < O corresponds to £ <O
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aly) — <) Figure 6 Plots of energy gain as a function of r.

Concluding Remarks

The graphs of energy have We observe that particles for There is less angular momentum for We observe that the stable For the variation of a, the stable We f d th Id
monotonic behavior and the both direct and retrograde direct orbit as compared to the : points always exceeds photon orbit € found that more energy cou

descending and the rising curves retrograde orbits in the presence of dark points never exceed the static (direct rotating) similar to the case be gained during the Penrose
correspond to the unstable and energy which agrees with radius in both of marginally stable orbits near Kerr process in the presence of dark
stable orbits similar to Kerr dS BH quintessential rotating BH [Toshmatoy, null as well as time-like dS BH [ Stuchl’ik, Z., Charbula’k, D. energy as well as with the

[Stuchl’ik, Z. and Slany’, P.: Phys. Rev. energy as compared to its B., Stuchl’ik, Z. and Ahmedov, B.: Eur. geodesics and Schee, J.: Eur. Phys. J. C 78 increase rotation parameter
D 69(2004) 064001]. absence. Phys. J. Plus 98(2017)132]. ) (2018)180].

motion has less
energy in the presence of dark



