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• THE KERR METRIC is the exact solution describing a rotating 
black hole, and underpins much of Relativistic Astrophysics. 

• Attempts to find a corresponding description for sufficiently 
realistic non-collapsed rotating matter, both inside  and outside 
the body have so far proved futile.  

Rotating matter with pressure is not well 

understood in General Relativity 
• The full field equations possess strong non-linearity and 

inter-dependence. They need to be simplified.  

• The post-Minkowskian approximation is one possibility, 
but this is only valid for small values of compactness. 

• The more typical approach is to assume that the rotating 
star is almost spherical, and only possesses a small bulge. 

• This would be the case if the star is slowly rotating. In 
General Relativity, this approximation is popularly 
described as the Hartle-Thorne approximation (1968). 
Gualtieri (2007) further extended this approximation to 
intermediate rotation rates.  

• A completely different approximation is to assume that 
the compactness of the star is close to (but not quite) its 
black hole limit.  This approximation was implicitly used 
by Frutos-Alfaro to specifically describe the exterior of a 
Neutron Star with any rotation rate (2016, 2019). 

One must resort to Approximation Methods 

Relevant historical work 

• Kerr metric (1963) – Field of a rotating black hole 

• Hartle-Thorne (1968) - Framework for describing slow rotation. 

• Ernst Equation (1968) – Framework for obtaining all stationary 
vacuum fields. But none so far conclusively describe the 
exterior of an isolated matter distribution. 

• Teukolsky (1974) – All perturbations of the Kerr metric, both 
stationary and time-dependent. 

• Mars-Senovilla (1998) – Darmois Matching Conditions for 
Boundary-value problem between matter and vacuum.  

• Sarnobat-Hoenselaers (2006), Vera et al (2006), Reina (2015) – 
Improved framework for describing slow rotation, properly 
taking into account the Mars-Senovilla  conditions.  

• Babak-Glampedakis (2006) – ‘Quasi-Kerr’ metric which 
describes a rapidly rotating Kerr Black Hole surrounded by 
oval-shaped cloud of slowly-rotating matter. 

• Cabezas et al (2007)  -  Post Minkowskian approximation 

• Frutos-Alfarro (2016, 2019) – Stationary perturbations of the 
Kerr metric, but using power series expansions for the non-
Kerr contributions, relative to the full Kerr part. 

Aims of this project 

• Review the Hartle-Thorne approximation and the 
assumptions on which it is based, and discuss variations of 
it, including the Gualtieri extension.   

• Appropriately set up the various frameworks which 
properly describe perturbations of the Kerr metric. 
Perform perturbation of both mass and angular 
momentum parts to first-order in the ‘compactness’. 

• Compare our results with those of Frutos-Alfaro. Also 
separately compare with the third-order expansions of 
Gualtieri, as a limiting case. 

• Discuss how our results could be used to describe the start 
of an axisymmetric collapse under our new approximation. 
 

Comparison of two 

main approximations: 

Left:  

Slow-rotation 

approximation 

Right:  

Highly-compact 

approximation 

 SUMMARY 

•Investigate the non-Kerr contributions to the Gravitational Field of a compact body. 

•Review the well-known approximation of slow-rotation 

•Introduce a new approximation: Matter is highly compact, and almost a black hole 

•This metric can provide initial conditions for Radiation from non-spherical collapse  
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• The Dragging of Inertial frames can be obtained by 
expanding the field equations to first-order in the rotation 
rate.  

• To determine the shape of the boundary,  the Hartle-Thorne 
(H-T) framework expands the field equations to second-
order in the rotation rate, for both exterior and interior. The 
former is solved analytically, whereas the latter is dealt with 
numerically. The solutions are matched at the boundary.  

• The second-order perturbed field can be decomposed into 
a ‘smearing’ part, and a ‘shaping’ part. The former would 
describe what happens if the mass that constitutes the 
bulge were smeared such that the boundary was ‘spherical’. 
The latter describes the modulation of this smearing.  

• But H-T is based on a coordinate system that fails to remain 
invariant during rotation, and therefore the matching fails 
to properly take into account the symmetries of the 
gravitational field, and any simplifications that may occur. 

• Their results for the vacuum are useful away from the 
boundary, but on the boundary a different approach to 
matching is required. 

To determine the effect of rotation on the 

shape, second-order expansions are required   

• A natural coordinate system  arises that is a direct 
statement about the symmetries - Weyl Coordinates . 

• The equations for the vacuum simplify considerably 
when compared to their counterparts in the interior. The 
solving of the Field Equations essentially reduces to that 
of solving the ‘Longitudinal’ part of the field, and the 
Dragging of inertial frames - Ernst Equation (1968). 

• Similarly, the Darmois Matching Conditions for the 
exterior and interior fields also simplify under this 
special coordinate system (Mars-Senovilla 1998). 

• Sarnobat-Hoenselaers (2006) solved the Ernst Equation 
for slow rotation to second-order, based on treating a 
known interior (Wahlquist 1968) as a Boundary-value 
problem. Although the whole vacuum metric was not 
Asymptotically Flat, it did nevertheless have a subcase. 

• MacCallum et al (2006) also solved the Ernst Equation to 
second-order for a generic interior, where they 
developed conditions for asymptotic flatness. Reina 
(2015) matched this vacuum to the slowly rotating 
interior in an analogous manner to H-T original scheme. 

The Ernst Potential formalism is naturally 

adapted to the symmetries of the problem 

Relevant Results 

• Ernst Equation 𝑅𝑒 𝐸 𝛻2𝐸 = 𝛻𝐸  
2

 where 𝐸 = 𝐹 + 𝑖𝐴, and the 
independent variables  x (‘radial’ coordinate) and y (angular 
coordinate) are related to Weyl coordinates ρ and z. 

• F is the ‘Longitudinal potential’, A is  the ‘Dragging potential’ 

• Expand the Ernst Equation to various orders in the rotation rate. 

• Non-rotating: 𝐹0is what is in the (full) Schwarzschild metric. 

• First order: 𝐴1is that of the Kerr metric to the same order. 

• Second order perturbed Ernst Equation, 𝐿2 𝐸2 = − 𝛻𝐸1
2, 𝐿2 

is an elliptic operator consisting of first and second derivatives. 

• Second-order result: 

𝐸2 = 𝐾𝑒𝑟𝑟 +  𝑐𝑙 𝑅𝑙 𝑥 + 𝑆𝑙 𝑥 𝑙𝑛
𝑥−1

𝑥+1
𝑃𝑙 y  𝑙=0,2 where 𝑃𝑙 is 

a Legendre Polynomial in y, and 𝑅𝑙  and 𝑆𝑙 are polynomials in x. 

• At Third-order, a similar result has been found to hold for 𝐸3, but 
with Legendre Polynomials  l=1 and 3 instead of l=0 and 2. 

And to obtain the effect of the object’s 

shape on the dragging of inertial frames, 

third order expansions are required.   

• The Second-order expansions only describe ‘mass 
perturbations’ i.e. how much mass ends up in the bulge. 
For slow rotation rates, this is adequate. 

• But at intermediate rotation rates, the shape of the 
boundary itself is going to contribute to the dragging of 
inertial frames. Therefore, we must expand the Field 
Equations to third-order in the rotation rate.  This 
describes ‘angular momentum perturbations’. 

• Gualtieri et al (2007) further extended the H-T 
framework, for both the interior and exterior. Analytical 
expressions for the latter were obtained. 

• On the other hand, the author has solved the Ernst 
Equation to third-order in the rotation rate. Relevant 
matching  conditions will be developed in a future work. 
 

 SLOW ROTATION APPROXIMATION – A REVIEW 

• Hartle-Thorne (1968) 

• Sarnobat-Hoenselaers (2006) 

• MacCallum, Mars, and Vera (2006) 

• Gualtieri et al (2007). Alternative approach to this in the current project. 
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• A Kerr Black Hole is widely believed to be the end state of 
the collapse of rotating matter. Therefore, one can imagine 
a situation where the initial (stationary) star has a 
compactness that is ‘almost’ that of a black hole. Note that 
in this approximation, slow rotation is not a requirement. 

• Actually, it has already been shown that in the non-rotating 
case the star can only be in equilibrium if its radius  is at 
least 9/8 of the Schwarzschild radius; this is the Buchdahl 
limit. It is not difficult to see that a Buchdahl-like condition 
must also hold for rotating stars, vindicating our 
approximation.  Also see Neugebauer (2004). 

• Unlike the equations describing perturbations of the 
Schwarzschild metric, the Field Equations describing 
stationary perturbations of the Kerr metric remain fully 
coupled, unless additional assumptions are made. 

• Babak and Glampedakis (2006) obtained the vacuum field 
for a full Kerr black hole surrounded by slowly rotating 
matter. 

• Frutos-Alfaro (2016, 2019) assumed a power-series 
expansion for the non-Kerr parts of the metric describing a 
Neutron Star having any rotation rate.     

An alternative to slow-rotation is assuming that 

the body is almost (but not quite) a black hole  

• It was shown by Teukolsky (1974) that the equations 
describing  perturbations of the Kerr metric decouple in 
an analagous manner that they did for perturbations of 
the Schwarzschild metric. The Single PDE which 
characterizes all the perturbations is the Teukolsky 
Equation, where the dependent variable describes the 
invariant Tidal components of this perturbed field.  

• As our proposed vacuum field is ‘close’ to the Kerr 
metric, it is reasonable to solve the stationary Teukolsky 
Equation to describe the non-Kerr part.  

• The Teukolsky Equation is widely used in the analysis of 
gravitational waves from disturbed Kerr Black holes; it 
has also been occasionally used to describe stationary 
perturbations of the Kerr metric.  

• In particular, Sano-Tagoshi (2015) has already applied 
this method to describe a Kerr black hole surrounded by 
a thin ring, while Le Tiec (2020) has investigated tidal 
deformations of the Kerr event horizon .  

• After solving for the rotational parts, we must apply the 
Hertz Potential method (do not confuse with the ‘Ernst 
Potential’ method!) to eventually obtain the metric. 

The Teukolsky Equation describes all 

possible perturbations of the Kerr metric… 

Relevant Results 

Perturbed Weyl Scalar expansion:     𝜓(𝑠) =  𝑅𝑙
𝑠∞

𝑙=2  (𝑟)𝑌𝑙
𝑠
(𝜃) 

𝑌𝑙
𝑠
(𝜃) is a spin-weighted Spherical Harmonic, while 𝑅𝑙

𝑠
 satisfies 

the Radial part of the Teukolsky Equation (c.f. Sano-Tagoshi 2015) 
𝑑

𝑑𝑟
∆𝑠+1

𝑑

𝑑𝑟
− ∆𝑠 𝑙 − 2 𝑙 − 3 𝑅𝑙

𝑠
= 0 

where in our case, l=2 (no other l), s= ± 2 and ∆= 𝑟2 − 2𝑀𝑟 + 𝑎2 
Our solution for s=2 and s=-2 respectively are: 

𝑅+2 𝑟 = 𝐶1 + 𝐶2 𝑎
2 𝑡𝑎𝑛−1

𝑚 − 𝑟

𝑎2 −𝑚2
−
𝐶2(𝑎

2)

∆2
𝐻 𝑎2, 𝑟3  

 and 𝑅−2 𝑟 = 𝐹1 + 𝐹2𝐾 𝑎2, 𝑟3  
 
𝐶1, 𝐶2(𝑎

2) and  𝐹1 are constants w.r.t r, while H and K are 
polynomials up to 𝑟3, while also being functions of 𝑎2. 
 
Perturbed Ernst Equation(s):  𝐿 𝐹1 = 𝛻𝐹0. 𝛻𝐴0and similarly for𝐴1 

…..well, almost. It does not include ‘trivial’ 

changes in mass and angular momentum 

• The Teukolsky Equation was originally developed for 
radiative perturbations. Although it does contain a 
contribution from stationary behavior,  this only accounts 
for  the ‘shaping’ part of the perturbed field and not the 
‘smearing’ part. The latter describes trivial increments in 
the mass and angular momentum. 

• To consider a smearing part, Van de Meent (2015) added 
a Completion Piece to the metric obtained after 
application of the Hertz potential method. We must 
similarly also search for an appropriate completion piece 
after applying the Hertz Potential method.  

• Then convert the new metric into Weyl Coordinates, and 
check that it satisfies the perturbed Ernst Equation. 

• Finally, compare with Babak-Glampedakis (2006), and  
the series expansions of Frutos-Alfaro (2016, 2019).  
 

 THE HIGHLY-COMPACT APPROXIMATION  

• The exterior of a nearly-collapsed stationary star will be similar to the Kerr metric    

• Initial attempts by Babak-Glampedakis (2006), Frutos-Alfarro (2016, 2019) 

• Instead we solve the Teukolsky equation, and then add on a ‘completion piece’ 

• This builds on Teukolsky (1974), Sano-Tagoshi (2015), and Van de Meent (2015). 
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• Apply the Hertz Potential method to determine the metric 
perturbations from the solution of the Teukolsky equation. 

• Pursue an appropriate Completion piece and add that on to 
the above. 

• Convert the whole metric into Weyl Coordinates and check 
that it satisfies the perturbed Ernst Equation. 

• Take the limiting case of this result up to third-order in the 
rotation rate, and compare with our earlier result obtained 
from directly solving the Ernst Equation in this 
approximation 

• Determine appropriate Darmois matching conditions for 
our nearly-collapsed approximation. Possibly use ‘Horizon 
penetrating coordinates’, Doran (2000), Ruffini (2018)? 

• Solve the time-dependent axisymmetric Teukolsky 
equation, and obtain the resulting metric. Use the above as 
stationary initial conditions. 

• Compare our procedure against the slow-rotation collapse 
approximation of Price-Cunningham-Moncrief (1978). 

• Also compare our results with the (possibly second-order) 
Post-Minkowskian approach. Construct a ‘hybrid’ 
framework that takes into account both approximations in 
the compactness. This could potentially represent a wide 
variety of cases!  

Work Still Remaining  

• The nearly-collapsed approximation for the stationary 
configurations is complementary to the widely-used 
slow-rotation approximation, and also to the post-
Minkowskian approximation.   

• Although it can be used for any rotation rate, it does 
neverthleless require the body to be highly-compact.  

• Unlike Frutos-Alfarro (2016, 2019), we do not make the 
restrictive assumption about representing the non-Kerr 
part of the metric as a power-series in the radial 
coordinate.  

• And, unlike Babak-Glampedakis (2006), we do not make 
the restrictive assumption  that the non-Kerr part of the 
metric requires slow-rotation. 

• Our  result can provide an initial state for axisymmetric 
rotating collapse at very high compactness, which is a 
significant emitter of Gravitational Waves.  

• When used in combination with the (second-order) 
post-Minkowskian approximation, this can represent 
quite a wide range of cases. 

• This entire framework can be used as a limiting 
comparison with Numerical work. 

• Paper(s) to be published! 

Conclusions 

Quote from Einstein: 

 CONCLUSIONS AND WORK STILL REMAINING 

• Determine Darmois matching conditions for the stationary configuration 

• The quasi-collapsed metric is the starting point for final non-spherical collapse    

• Solve the time-dependent axisymmetric Teukolsky equation for the vacuum  

• Paper(s) to be published! 
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