New Mechanism Resolving Blackhole Information Missing Puzzle
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Gravity Induced Spontaneous Radiation, GISR hereafter, is a new radiation mechanism in-
principle different from but potentially equivalent with hawking radiation and resolutions to the
information missing puzzle. This radiation, happens to all kinds of blackholes and requires only
their inner structures or microscopic states embodied in the Bekenstein-Hawking entropy as ba-
sis. It happens when such inner structures change and allows for explicitly hermitian hamiltonian
description. By Wigner-Wiesskopf approximation, we show that such a radiation has thermal spec-
trum exactly the same as hawking radiation; while through numerics, we show that variations of the
radiation particles’ entropy exhibit all features of Page curve as expected. We also provide exact
and analytic solutions to the sourceful Einstein equation describing inner structures required by
GISR and show that, after quantization the degeneracy of wave functions corresponding with those
solutions are consistent with the area law formula naturally.

The small correction theorem [1] of S. Mathur says
that so long as Hawking radiation happens through pair
production and escaping mechanism around the no-hair
horizon, then no matter how ingeniously small correc-
tions are added to the evolution of a blackhole, the en-
tropy of its hawking particles will increase monotonically
till the blackhole evaporate away. Basing on this the-
orem, it’s very natural to conclude that new radiation
mechanism is the only way to solve the information miss-
ing puzzle. We will show here that GISR is just such a
new mechanism [2-4], in which radiation particles arise
from the radiation body’s inner structure changing, see
FIG.1. In principle, GISR is a new and universal radia-
tion mechanism happens to all composite objects instead
of blackhole only.

Ezxplicitly Hermitian Hamiltonian Different from the
usual atoms’ radiation which happens through dipole
couplings between the atom and photons, GISR happens
through monopole couplings between the blackhole and
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FIG. 1: In conventional understanding, hawking particles
arise from vacuum fluctuation and escaping around the no-
hair horizon. Collecting and measuring their energy provide
us energy-time curves universal to all microscopic black holes.
In GISR, particles arise from their couplings with inner struc-
ture of black holes embodied in their Bekenstein-Hawking en-
tropy. Collecting and measuring their energy will provide us
microstate dependent energy-time curves

hawking particles,
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where w, w-=w-1 et al denote degeneracy or eigenenergies
of the blackhole regarding contexts; ¢, j et al distinguish

microstates of equal mass blackholes, i.e., i =1,2--- jw,
2 2
w = exp[f&%], j=1,2 - wi,wl = exp[tg]’; ]; the

symbol o' represents quantum state corresponding with
the totally evaporated blackhole; a:g & a4 are operators

describing the vacuum fluctuation, blnvz & a4 take re-
spomnses for the blackhole energy level’s lowering or rising
and the vacuum fluctuation mode wy'’s realization or in-
verse. The monopole coupling channel parameter will be
written as
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Logics behind this definition is, more similar the initial
and final blackhole microstates are, more easier the radi-
ation/absorption between them will be, see [4] for more
details.

Focusing on spherically symmetric radiations only, so
hawking partticles’ spatial-momentum can be ignored
and their quantum state will be characterized by energy
exclusively, the basis of Hilbert space for an evaporating
blackhole and corresponding radiations can be written as
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On this basis, quantum state of a blackhole and its radi-



ation at arbitrary middle epoch can be written as
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where & = {o’,---p’¢¥} is an abbreviation for the radi-
ation particles’ quantum state, with the index ¢, and
k et al inheritating from the radiation body w’, w’ and
v¥ et als correspondingly and the total energy given by
w=0+---p+q=w—u. Evolutions of this wave function
are determined by the standard Schrodinger equation as
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where 7 has been set to 1 and & differs from & only by
the last emitted or absorbed particles. Without loss of
generality, we will set

b1 (0) =1,¢l,.,(0) = 0,¢57°(0) = 0 (7)
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That is, we let our blackhole lie on eigenstate w' at initial
time ¢t = 0.

For the first one or few particles’ radiation, we can
set all c;jj7é¢’°1:0 and focus on the evolution of cfjl(t)
and ¢2 (t). In this case, the standard Wigner-Wiesskopf

approximation [5] implies,
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this immediately leads to
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where I' is defined as FEZT: |gwtun?. In the second
step of (11) we assumed that the radiation particle is
quantized so that o1 = kw with k = 0, 1 for fermions and

k=0,1,2--- for bosons. The exponential factor ef’“,;TwT
with kT = (87GyM)~! in this step follows from the
normalization condition of ¢, and the fact that gyn, is
approximately constant for most of the radiation chan-
nels so that
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As results, we get power spectrums for the GISR of
blackholes completely the same as Hawking radiation. It

should be noted here that GISR happens to all compo-
nent objects. Black hole is just such an example and the
thermal spectrum follows from its highly degenerating
microscopic states.

While for the long term behavior of the blackhole and
its GISR, we only need to integrate equations (6)-(7) nu-
merically. We provide in FIG.2 results of this integration
explicitly. From the figure, we easily see that variations
of the radiation particles’ entropy have indeed first in-
creasing then decreasing feature, just as Page curve ex-
hibits for unitarily evolving blackholes. New features in
GISR are, the trends have late time non-monotonic be-
havior. This is because in its hamiltonian description
(2), the u > v radiation and u < v absorption terms are
equally allowed. This means that earlier radiated parti-
cles have always non-zero probability to come back and
cause ¢, (t)’s Rabi oscillation. However, as w — oo, this
late time oscillatory behavior will become more and more
ignorable.
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FIG. 2: Evolutions of the horizon size and radiation particles’
entropy of 6 initially eigenstate blackhole following exact nu-
meric integration of eq(6) with initial condition (7).

Information missing puzzle In GISR and its quantum
wave-function description, causes of potential informa-
tion missing effects are almost transparent. Firstly, the
Wigner-Wiesskopf approximation, also called Markovian
approximation includes forgetting history effects. Forget-
ting history implies information missing very naturally.
Technically, this happens in (8)-(9) when shifting cil’s
history out of the integration symbol,
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This introduces non-hermiticity to the process and is the
direct cause of thermal spectrum. Secondly or more im-
portantly, in Hawking’s arguments, a blackhole’s radia-
tion evolution is considered a sequence of events like
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While in the true quantum world, at any given time, the
blackhole size is not specifiable and the system can only



be considered superposition of configurations of different
blackhole/radiation(BR)-mass-ratio,

Zavavaivad i e

where PC-diagram with different length of zigzag part
denotes different size blackhole and corresponding radi-
ations respectively. Considerations (15) ignore interfer-
ences between configurations of different BR-mass-ratio,
thus introducing entropies to the system artificially.
Mathematically, the process (16) can be written as
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where [¢g), |11) are the radiation-before, evaporation-
after blackhole state respectively, [b°r%), [b™r™), [b°r)
are three typical but non-exhaustive intermediate state of

big, median, small blackholes with their radiation. Trac-
ing out microstates of the blackhole, we can write
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So entropies of the radiation product can be calculated
routinely s = tr,, (¥L[YL) In(PL]t,), with result
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where Syb,b, Spmpm, Spsps denote entanglement entropies of
the intermediate state blackholes and their radiation. At
early times, cil > cli&clt) so s(t) is dominated by s,
and increases with time. As time passes by, s(t) will be
dominated by sym,m and reach maximum on Page epoch,
then decrease due to dominations of sps,.s, and then Rabbi
oscillate, as FIG.2 displays.

From the viewpoint of GISR, the so called island for-
mula or replica wormhole method [6] are nothing but
equivalent accounting for interferences between configu-
rations of different BR-mass-ratio

This interpretation can yield Page-curve for Hawking ra-
diation in 1+1 dimensional JT gravity, but it is not fun-
damental either in quantum mechanics or in general rel-
ativity. It cannot tell us where the “missing” informa-
tion go. That is, when contributions from the replica
wormhole channel is included, what should we measure
to recover information stored in the initial blackhole? In
GISR’s resolution, answers to such questions are clear,
the horizon size v.s. time relation of a blackhole is mea-
surable and encodes all information the blackhole carries
initially, see FIG.2 for concrete examples.

Inside Black Holes The idea of GISR dates back to
1970s [7-9], during which Mukhanov and Bekenstein
speculated atomic physics like interpretation for hawk-
ing radiation. However, working on simple quantization
rule for blackhole masses following from the adiabatic
invariance of their horizon area, MB derived out dis-
crete line shape spectrum for the radiation, which con-
tradicts Hawking’s continuous spectrum obviously. How-
ever, just as we show in [2-4, 10-12], microstates of black-
holes can be quantized in such a way that mass spectrum
of them is continuous. So contradictions plaguing MB
are avoidable. To see this directly, firstly we note that
solutions to the Einstein equation corresponding nontriv-
ial inside horizon structure of black holes can be working
out exactly,
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This describes a dust cluster’s oscillation inside the hori-
zon instead of aggregating on the central point and form-
ing eternal singularities there. In these formulas, 7 and
o are proper time and radial coordinate of dust volume
element, a[r, o] the scale factor, M[g] the co-moving ra-
dial mass profile of the dust at an arbitrary initial time
whose concrete form is arbitrary on classic levels. The
energy-momentum tensor seeds this metric has forms
i : _ M'[o]/8m¢?

T, =diagonal{p,0,0,0} with p= 3 3G£2,T2_( igj) et
Although dust is chosen here as proxies for matters con-
sisting of our black holes, when gravitation dominates all
other interaction, this is a precise enough approximation
for general matter sources.

Outside the matter occupation region our metric joins
to the usual Schwarzschild blackhole in Lemaitre coordi-
nate smoothly
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with 7, = £ pé’;‘gg = 2G M. This means that our inside
horizon metric (21)-(24) satisfies requirements of the no-
hair theorem. By shifting the white hole region to the fu-
ture of blackhole region and plotting the east&west semi-
sphere separately, we revise the usual Penrose Carter di-
agram and plot our blackhole with oscillatory cores in
FIG. 3. This revision of Penrose-Carter diagram con-
tain ideas similar with 't Hooft’s antipodal identification
[13]. From the figure, we easily see that our solutions
respect the singularity theorem very well, i.e. all matters
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FIG. 3: Left, in a Schwarzschild blackhole with oscillatory
matter cores, white hole lies on the top of blackhole. Points
on the diagram map to 3-+1 spacetime through (7, o)®Sz U
(1,07)®S3 — RY3, S2 and S3 meaning east and west semi-
sphere respectively. The five colored curves display five in-
stantaneous of a matter shell’s motion. Volume elements on
the outmost shell moves along traces like A-B-C-D-E-F-G-H-
A-.-, C is the antipodal of B, E is identified with D, and et
al. Right, the number of ways matters oscillating inside the
horizon a blackhole is consistent with the area law formula of
Bekenstein-Hawking entropy

consisting of or falling into the blackhole will reach the
singularity in finite proper time [14-16].

Secondly, quantization of inner structures such as (21)-
(24) can be done canonically. Looking the matter core as
a direct sum of many concentric shells, each shell moves
freely under gravitations due to itself and more inside
partners.
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where h; is the function appearing in the effective geome-
try felt by the i-th shell, ds? = —h;dt® +h; *dr? +r2dQ2,
T'; is the corresponding Christoffel symbol. For each i, we
quantize equation (27) by looking it as an operatorised
hamiltonian constraint and introduce a wave function
1;(r) to denote probability amplitude the shell be found
of r-size, so that
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where M; is the mass of i-th shell and its inner partners,
m; that of the i-th shell only. Square integrability of v;
requires that
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where L}Hfl(Qx) is the associated Lagurre polynomial
and N; its normalization in standard mathematics. We
then direct-product all ¢;s to get wave functionals of the
blackhole matter core as follows
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Quantization equality (30) and sum rule (31) do not re-
quire discreteness of the black hole total mass spectrum.
However, they indeed form complete constraints on how
matter core of a blackhole can be considered big number
of concentric shells and from what initial position each
shell is released freely from inside the horizon, i.e. degen-
eracies of the wave function(31). We provide in FIG.3
evidences that, the number of such degeneracies is con-
sistent with the area law formula of Bekenstein-Hawking
entropy, Log[#degen] =~ MTEM x Area, see [2—4, 10, 11]
for more details.

Conclusion We provide in this letter the idea of GISR
and use it as alternative mechanism for hawking radi-
ation and resolution to the information missing puzzle.
We provide explicitly hermitian hamiltonian description
for this mechanism and inner structures supporting it
in standard general relativity and quantum mechanic.
Quantization of our inner structures leads to a new inter-
pretation for the origin of Bekenstein-Hawking entropy
and area law formulas. Hamiltonian description of GISR
indicates that hawking particles carry information away
from the no-hair blackhole through changing its inner
structure hence evaporation progression. In looking evap-
orating blackhole as time-dependent semi-classic object,
conventional arguments ignore quantum interferences be-
tween configurations of different BR-mass-ratio thus in-
troduce entropies to the system artificially and cause in-
formation missing puzzle. To find evidences for GISR
and inner structures underlying it are very interesting
directions for future work.
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