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General matching across Killing horizons of order zero

Preliminaries

Choice of {®7,¢™ }: . .
= o J > {2,7,4,5(2), Y*+}, n-dimensional hypersurface data

(Mars, 2013) embedded on two spacetimes (M=, gT)
with embeddings ®* (QF := ®* (X)) and riggings ¢
T 5, vj:} basis of T(TM*)|gs (kT future null
generator, LT future and transverse, v ~ spacelike)
ae

v

Assumption: 3 foliation defining functions s such

\ that k% (s¥) =1 on QF

h¥T induced metric on the leaves

Y

v

{¢=, eai} to be identified in the matching process

vy

The whole matching depends on the set of functions
{H\,y?), h4(yP)} (det(9,5h%) # 0)

Building {®1, ¢t }:

of = Fi+, Shell junction conditions
+ okt o pdot
ey =aykT™ +byvy, = - _ —
Cﬂr:%IL++Efk¥ S+°<D+ = A - const. huhﬂ:bfr:bglfik“1>(10)7 A>0
LKyt sTo®" = H +const. | 4 ar, by, F, B, C¥ in terms of {H, h"}
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ss Killing horizons of order zero

After having analyzed the necessary and sufficient conditions that allow for the matching of two spacetimes with null
embedded hypersurfaces as boundaries (Manzano-Mars, 2021), we address the problem of matching across Killing
horizons of zero order when the symmetry generators are to be identified (Manzano-Mars, arXiv preprint 2205.08831).

Definition. (Killing horizon of order zero, KHy) Let (M, g) be a spacetime,  C M be a smooth connected null
hypersurface without boundary and & € T'(TQY) a null vector (symmetry generator). Define S := {p € Q | £, = 0}.
Then 5 := Q\ S is a KHp if:

(a) S is the union of smooth connected closed submanifolds of codimension two
(b) 4 is totally geodesic

The surface gravity s¢ of a KHo is defined on J% by grad ((€,£)4) %o —2ke€

» Assumption: k¢ > 0 constant on #p (extended to ) as the same constant)
» By definition of KHy, £ = Fk  (k affine from now on)

> Ve % ke&  entails € = (f + kes)k, with k(f) =0 and s foliation defining function
Killing horizons 2 such that JZ is a smooth connected hypersurface are KHg

v

v

If ke| 77 # 0 and S # 0, then S := {p € % | s(p) = —%g)} spacelike

v

If r¢| 77 = 0, S empty or the union of codim-2 null subsets of S (zeros of f)
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Matching across Killing horizons of order zero

Matching across KHy: sy try generators identified

» Aim: matching of two spacetimes (Mi,gi) with boundaries /= when £* are identified up to a constant

Map ® : #~ — J4T satisfies @, (£7) \%Jr = a§+|%+, a € R—{0} (6, a&t must be both future or past)
The submanifolds ST must be mapped to each other via &

Hy* are totally geodesic, but the step function H is restricted

vV vvVvy Y

aL(f+ + Fig H)
O\H
In (Manzano-Mars, arXiv preprint 2205.08831), we study the cases: Iiz.t =0, Iig: # 0, Iig =0, Kg #0

Away from the S, step function is determined up to an integration function: f~ + ng)\ =

v

Matching across KHy: ¢+ degenerate (i.e. kE =0)

» S empty or the union of m € N* smooth connected codim-2 null submanifolds of 4 = mt=m

fon: Ay _ aft @t A Ay ; ; ; ;
» Step function: H(\ y*) = A A+ H(y?), H(y“) integration function encoding the matching freedom

» Most general shell has vanishing pressure )

» Velocity along null generators of J&* is totally determined (outside of S) by the identification of {£¢~,a¢t}

» One still can select any pair of sections, one on each side, and identify them

» The arbitrary function H (yA) accounts for this freedom
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Matching across Killing horizons of order zero

{fiJrn s <O} {fiJrn s >0}, —{fiJrn sT =0} I ST £0)

Matching across KHy: £+ non-degenerate (i.e. /{2[ £0, H/T = /Ypi uStu /ﬁi)

» No assumption on the geodesic completeness of J%4T, non-zero constant % := tmg(n&_)*l

¢+

€* non-degenerate: case ST # )

— A A
> Step function: H(\,y4) = a(y?) (/\ + %) = %, a(y?) > 0 integration function
& 3
» Matching requires K := ang(ng)*l = 1, hence surface gravities of {£~,a¢*} must coincide

» Resulting shells have vanishing pressure (step function linear in \)

fa=

£* non-degenerate: case ST =) = & not necessarily equal to 1, ¢ := sign

» Step function: H ()\,yA) = H% (ea (yA) ‘f7 (yA) 4 Ng)\)k —ft (yA)) , « (yA) >0, Matchings (a)-(d)
3

M L0 O
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Freedom associated to a(y?)

» S* = (: freedom of selecting a section
on each side and identify them

» ST #£(: freedom of selecting the initial
velocities at S*
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Matching across Killing horizons containing bifurcation surfaces

RicT ambient Ricci, R‘Oici Ricci on the leaves {sjE = const.} C JE, IS\ — X embedding
ot = Zf;((éi)*(af)) (torsion one-form of the sections), R¥ := f((@%)*(Rict)), Rl := f;((@%)*(Rict))

Theorem (VI L,

Let /% be non-degenerate Killing horizons containing bifurcation surfaces ST and o = 8y H. Then, YT and 7 can
be expressed in terms of the tensors

via - 1/~ 1 1
==, 5= ~+ . =+ I =+ E= I I~ + I~+ ~+~4
1 = Wro 1 =W o 277 =0T g (RIJ —Rp; - 2 (Vng + Vi<t > T o5y ) J
== ~+
- _ - _ Sy - _=- . + _ + _ _ % + _ =+
as Y;; =0, T Ty Y, =Eh Yii =0, ) Y, = Ty Y, =E15A and
Shell’s energy-momentum tensor 7: 711 = —'yI‘][éjj])\, 71 — —571"[{]], 17 =0

Conclusions

EEE
» Matter-content given by «, geometry of ST and R

v

Components Yaib, 74 either constant along generators or linear in \

v

Energy density p := 71! either identically zero or unavoidably changes sign

» Energy current j! := 711: independent of A (j! insensitive to the change of sign of p)

» Surprising behaviour: energy density changes sign, compatible with shell field equations (Barrabés-Israel, 1991)

In (Manzano-Mars, arXiv preprint 2205.08831), results applied to spherical, plane or hyperbolic symmetric spacetimes
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