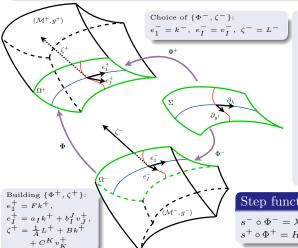
General matching across Killing horizons of order zero

Preliminaries



► { $\Sigma, \gamma, \ell, \ell^{(2)}, Y^{\pm}$ }, *n*-dimensional hypersurface data (Mars, 2013) embedded on two spacetimes ($\mathcal{M}^{\pm}, g^{\pm}$) with embeddings Φ^{\pm} ($\Omega^{\pm} := \Phi^{\pm}(\Sigma)$) and riggings ζ^{\pm}

- ► { $L^{\pm}, k^{\pm}, v_A^{\pm}$ } basis of $\Gamma(T\mathcal{M}^{\pm})|_{\Omega^{\pm}}$ (k^{\pm} future null generator, L^{\pm} future and transverse, v_A^{\pm} spacelike)
- ▶ Assumption: ∃ foliation defining functions s^{\pm} such that $k^{\pm}(s^{\pm}) = 1$ on Ω^{\pm}
- ▶ h^{\pm} induced metric on the leaves
- $\{\zeta^{\pm}, e_a^{\pm}\}$ to be identified in the matching process
- ▶ The whole matching depends on the set of functions $\{H(\lambda, y^B), h^A(y^B)\}$ $(\det(\partial_{y^B} h^A) \neq 0)$

/	Step function H	Shell junction conditions
1	$s^{-} \circ \Phi^{-} = \lambda + \text{const.}$ $s^{+} \circ \Phi^{+} = H + \text{const.}$	$ \begin{aligned} h_{IJ}^{-} _{p} &= b_{I}^{L} b_{J}^{K} h_{LK}^{+} _{\Phi(p)}, \ A > 0 \\ A, \ a_{I}, \ b_{I}^{J}, \ F, \ B, \ C^{K} \ \text{in terms of} \ \{H, h^{A}\} \end{aligned} $

Matching across Killing horizons of order zero

After having analyzed the necessary and sufficient conditions that allow for the matching of two spacetimes with null embedded hypersurfaces as boundaries (Manzano-Mars, 2021), we address the problem of matching across Killing horizons of zero order when the symmetry generators are to be identified (Manzano-Mars, arXiv preprint 2205.08831).

Definition. (Killing horizon of order zero, KH_0) Let (\mathcal{M}, g) be a spacetime, $\Omega \subset \mathcal{M}$ be a smooth connected null hypersurface without boundary and $\xi \in \Gamma(T\Omega)$ a null vector (symmetry generator). Define $\mathcal{S} := \{p \in \Omega \mid \xi|_p = 0\}$. Then $\mathscr{H}_0 := \Omega \setminus \mathcal{S}$ is a KH_0 if:

- (a) ${\mathcal S}$ is the union of smooth connected closed submanifolds of codimension two
- (b) \mathscr{H}_0 is totally geodesic

The surface gravity κ_{ξ} of a KH₀ is defined on \mathscr{H}_0 by grad $(\langle \xi, \xi \rangle_g) \stackrel{\mathscr{H}_0}{=} -2\kappa_{\xi}\xi$

- ▶ Assumption: $\kappa_{\xi} \ge 0$ constant on \mathscr{H}_0 (extended to $\overline{\mathscr{H}_0}$ as the same constant)
- ▶ By definition of KH_0 , $\xi = Fk$ (k affine from now on)
- ▶ Killing horizons \mathscr{H} such that $\overline{\mathscr{H}}$ is a smooth connected hypersurface are KH₀

Fixed point set \mathcal{S}

- ▶ If $\kappa_{\xi}|_{\overline{\mathscr{H}}} \neq 0$ and $\mathcal{S} \neq \emptyset$, then $\mathcal{S} := \{p \in \overline{\mathscr{H}_0} \mid s(p) = -\frac{f(p)}{\kappa_{\xi}}\}$ spacelike
- ▶ If $\kappa_{\xi}|_{\overline{\mathscr{H}}} = 0$, \mathcal{S} empty or the union of codim-2 null subsets of $\overline{\mathscr{H}}$ (zeros of f)

Matching across Killing horizons of order zero

Matching across KH₀: symmetry generators identified

- ► Aim: matching of two spacetimes $(\mathcal{M}^{\pm}, g^{\pm})$ with boundaries $\overline{\mathscr{H}_0}^{\pm}$ when ξ^{\pm} are identified up to a constant
- $\blacktriangleright \text{ Map } \Phi : \overline{\mathscr{H}_0}^- \longrightarrow \overline{\mathscr{H}_0}^+ \text{ satisfies } \Phi_*\left(\xi^-\right)|_{\overline{\mathscr{H}_0}^+} = a\xi^+|_{\overline{\mathscr{H}_0}^+}, \quad a \in \mathbb{R} \{0\} \ (\xi^-, a\xi^+ \text{ must be both future or past})$
- ▶ The submanifolds S^{\pm} must be mapped to each other via Φ
- ▶ $\overline{\mathscr{H}_0}^{\pm}$ are totally geodesic, but the step function H is restricted
- Away from the S^{\pm} , step function is determined up to an integration function: $f^- + \kappa_{\xi}^- \lambda = \frac{a(f^+ + \kappa_{\xi}^+ H)}{\partial_{\lambda} H}$
- ► In (Manzano-Mars, arXiv preprint 2205.08831), we study the cases: $\kappa_{\xi}^{\pm} = 0$, $\kappa_{\xi}^{\pm} \neq 0$, $\kappa_{\xi}^{+} = 0$, $\kappa_{\xi}^{-} \neq 0$

Matching across KH₀: ξ^{\pm} degenerate (i.e. $\kappa_{\xi}^{\pm} = 0$)

- ▶ S empty or the union of $m \in \mathbb{N}^*$ smooth connected codim-2 null submanifolds of $\overline{\mathscr{H}_0} \implies m^+ = m^-$
- ► Step function: $H(\lambda, y^A) = \frac{af^+(y^A)}{f^-(y^A)}\lambda + \mathcal{H}(y^A), \qquad \mathcal{H}(y^A)$ integration function encoding the matching freedom
- Most general shell has vanishing pressure

Freedom

- ► Velocity along null generators of $\overline{\mathscr{H}_0}^{\pm}$ is totally determined (outside of \mathcal{S}) by the identification of $\{\xi^-, a\xi^+\}$
- ▶ One still can select any pair of sections, one on each side, and identify them
- ▶ The arbitrary function $\mathcal{H}(y^A)$ accounts for this freedom

Matching across Killing horizons of order zero

$$\mathscr{H}_{\mathbf{p}}^{\pm} := \left\{ f^{\pm} + \kappa_{\xi}^{\pm} s^{\pm} < 0 \right\}, \quad \mathscr{H}_{\mathbf{f}}^{\pm} := \left\{ f^{\pm} + \kappa_{\xi}^{\pm} s^{\pm} > 0 \right\}, \quad \mathcal{S}^{\pm} := \left\{ f^{\pm} + \kappa_{\xi}^{\pm} s^{\pm} = 0 \right\} (\text{If } \mathcal{S}^{\pm} \neq \emptyset)$$

Matching across KH₀: ξ^{\pm} non-degenerate (i.e. $\kappa_{\xi}^{\pm} \neq 0, \ \overline{\mathscr{H}_{0}}^{\pm} \equiv \mathscr{H}_{p}^{\pm} \cup \mathcal{S}^{\pm} \cup \mathscr{H}_{f}^{\pm}$)

▶ No assumption on the geodesic completeness of $\overline{\mathscr{H}_0}^{\pm}$, non-zero constant $\widehat{\kappa} := a\kappa_{\xi}^+ (\kappa_{\xi}^-)^{-1}$

[±] non-degenerate: case $\mathcal{S}^{\pm} \neq \emptyset$

► Step function:
$$H(\lambda, y^A) = \alpha(y^A) \left(\lambda + \frac{f^-(y^A)}{\kappa_{\xi}^-}\right) - \frac{f^+(y^A)}{\kappa_{\xi}^+}, \qquad \alpha(y^A) > 0$$
 integration function

- ► Matching requires $\hat{\kappa} := a \kappa_{\xi}^+ (\kappa_{\xi}^-)^{-1} = 1$, hence surface gravities of $\{\xi^-, a\xi^+\}$ must coincide
- Resulting shells have vanishing pressure (step function linear in λ)

 ξ^{\pm} non-degenerate: case $\mathcal{S}^{\pm} = \emptyset \implies \widehat{\kappa}$ not necessarily equal to 1, $\epsilon := \operatorname{sign}(\widehat{\kappa}) \operatorname{sign}(f^- + \kappa_{\xi}^- \lambda)$

Step function:
$$H(\lambda, y^A) = \frac{1}{\kappa_{\xi}^+} \left(\epsilon \alpha \left(y^A \right) \left| f^- \left(y^A \right) + \kappa_{\xi}^- \lambda \right|^{\hat{\kappa}} - f^+ \left(y^A \right) \right), \quad \alpha \left(y^A \right) > 0, \quad \text{Matchings (a)-(d)}$$

Freedom associated to $\alpha(y^A)$

- S[±] = ∅: freedom of selecting a section on each side and identify them
- S[±] ≠ Ø: freedom of selecting the initial velocities at S[±]

Miguel Manzano, Marc Mars

Matching across Killing horizons

4/5

(d)

Matching across Killing horizons containing bifurcation surfaces

 $\begin{array}{ll} \mathbf{Ric}^{\pm} \text{ ambient Ricci,} & \overset{\circ}{\mathbf{Nic}^{\pm}} \text{ Ricci on the leaves } \{s^{\pm} = \mathrm{const.}\} \subset \overline{\mathscr{H}}^{\pm}, \quad f_{\lambda} : S_{\lambda} \hookrightarrow \Sigma \text{ embedding} \\ \widetilde{w}^{\pm} := 2f_{\lambda}^{*}((\Phi^{\pm})^{*}(\boldsymbol{\sigma}_{L}^{\pm})) \text{ (torsion one-form of the sections),} \quad \widetilde{\boldsymbol{R}}^{\pm} := f_{\lambda}^{*}((\Phi^{\pm})^{*}(\mathbf{Ric}^{\pm})), \quad \boldsymbol{R}^{\parallel} := f_{\lambda}^{*}((\Phi^{\pm})^{*}(\overset{\circ}{\mathbf{Ric}^{\pm}})) \end{array}$

Theorem (∇^{\parallel} Levi-Civita connection on { $\lambda = \text{const.}$ }) ($\kappa_{\xi}^{+} = \kappa_{\xi}^{-}$) (All dependence in λ is explicit)

Let \mathcal{H}^{\pm} be non-degenerate Killing horizons containing bifurcation surfaces \mathcal{S}^{\pm} and $\alpha = \partial_{\lambda} H$. Then, Y^{\pm} and τ can be expressed in terms of the tensors

$$\begin{split} \widetilde{\varsigma}_{I}^{-} &:= \widetilde{w}_{I}^{-}, \qquad \widetilde{\varsigma}_{I}^{+} := \widetilde{w}_{I}^{+} - 2\frac{\nabla_{I}^{\top}\alpha}{\alpha}, \qquad \widetilde{\Xi}_{IJ}^{\pm} := \frac{1}{2} \left(\widetilde{R}_{IJ}^{\pm} - R_{IJ}^{\parallel} - \frac{1}{2} \left(\nabla_{I}^{\parallel} \widetilde{\varsigma}_{J}^{\pm} + \nabla_{J}^{\parallel} \widetilde{\varsigma}_{I}^{\pm} \right) + \frac{1}{2} \widetilde{\varsigma}_{I}^{\pm} \widetilde{\varsigma}_{J}^{\pm} \right), \\ \text{as} \quad Y_{11}^{-} = 0, \qquad Y_{1J}^{-} = -\frac{\widetilde{\varsigma}_{J}^{-}}{2}, \qquad Y_{IJ}^{-} = \widetilde{\Xi}_{IJ}^{-} \lambda; \qquad Y_{11}^{+} = 0, \qquad Y_{1J}^{+} = -\frac{\widetilde{\varsigma}_{J}^{+}}{2}, \qquad Y_{IJ}^{+} = \widetilde{\Xi}_{IJ}^{+} \lambda \quad \text{and} \\ \text{Shell's energy-momentum tensor } \tau: \quad \tau^{11} = -\gamma^{IJ} [\widetilde{\Xi}_{IJ}] \lambda, \qquad \tau^{1I} = -\frac{1}{2} \gamma^{IJ} [\widetilde{\varsigma}_{J}], \qquad \tau^{IJ} = 0 \end{split}$$

Conclusions

- Matter-content given by α , geometry of \mathcal{S}^{\pm} and $\widetilde{\boldsymbol{R}}^{\pm}$
- ▶ Components Y_{ab}^{\pm} , τ^{ab} either constant along generators or linear in λ
- ▶ Energy density $\rho := \tau^{11}$: either identically zero or unavoidably changes sign
- Energy current $j^I := \tau^{1I}$: independent of λ (j^I insensitive to the change of sign of ρ)
- ▶ Surprising behaviour: energy density changes sign, compatible with shell field equations (Barrabés-Israel, 1991)

In (Manzano-Mars, arXiv preprint 2205.08831), results applied to spherical, plane or hyperbolic symmetric spacetimes