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In our article [1], we derive the best possible bounds that can be placed on Yukawa– and
chameleon–like modifications to the Newtonian gravitational potential with a cavity optomechanical
quantum sensor. By modelling the effects on an oscillating source-sphere on the optomechanical
system from first-principles, we derive the fundamental sensitivity with which these modifications
can be detected in the absence of environmental noise. In particular, we take into account the
large size of the optomechanical probe compared with the range of the fifth forces that we wish to
probe and quantify the resulting screening effect when both the source and probe are spherical. Our
results show that optomechanical systems in high vacuum could, in principle, further constrain the
parameters of chameleon-like modifications to Newtonian gravity.

I. INTRODUCTION

General Relativity (GR) is one of the most success-
ful theories of nature, but there are compelling reasons
to explore modifications to the behaviour of gravity on
both large and small scales. Most of the precise predic-
tions of GR have consistently been demonstrated exper-
imentally. While a natural part of GR, a cosmological
constant poses a theoretical challenge to particle physics
since the small observed value is inherently sensitive to
high-energies, requiring delicate balancing [2]. Further-
more, many theories of high energy physics that attempt
to solve this and other problems – such as building a con-
sistent quantum theory of gravity – predict deviations
from GR. These theories are collectively known as mod-
ified gravity theories.

Modified gravity theories, however, typically face a
difficult challenge in the form of solar system tests of
Newton’s laws. Models that differ from GR significantly
enough to explain the observed acceleration of the Uni-
verse on large scales are typically ruled out by their pre-
dicted deviations on smaller scales (solar system and lab-
oratory tests) [3–5]. An approach considered by many
authors is the chameleon mechanism [6–8]; the basic idea
is to add a scalar field that couples directly to gravity in
a manner that depends on the local density of matter. In
high-density regions, such as inside a galaxy, the effects
of modified gravity are screened out, allowing the theory
to evade solar system tests. In the low-density void re-
gions between galaxies, however, the effects of modified
gravity would be unscreened.

If such a density-dependent gravity mechanism is at
play, it ought to be detectable in principle by high-
precision laboratory experiments. In particular, the
fundamental sensitivity improvements offered by quan-

FIG. 1. A gold source mass attached to a shear piezo oscil-
lates to create a time-varying gravitational field. The field,
which potentially contains deviations from Newtonian gravity,
is detected by an optomechanical probe system where the pho-
ton number â†â couples to the mechanical position x̂mech as
â†âx̂mech, here presented as a moving-end mirror in a Fabry–
Pérot cavity. The amplitude εx0 of the source mass oscillation
is a fraction of the total distance x0 between the systems. By
accounting for the vacuum background density, we may also
compute bounds on the parameters of the chameleon screen-
ing mechanism.

tum systems are especially promising [9]. At the mo-
ment, the detection of modified gravity, and in particu-
lar, chameleon fields, has been explored through a diverse
variety of methods [10].

An additional approach to detecting the small-scale
effects of modified gravity and screening is to take ad-
vantage of recent developments in the field of optome-
chanics, where a small mechanical element is coupled to
a laser through radiation-pressure [11, 12] (see figure 1).
The key question we seek to answer in this work is: what
fundamental range of parameters of modified gravity the-
ories could ideally be excluded with a quantum optome-
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chanical sensor? To address this question, we consider
an idealised system described by a nonlinear, dispersive,
optomechanical Hamiltonian which couples the optical
and mechanical degrees of freedom through a nonlinear
radiation-pressure term given by (in the absence of an
external gravitational field):

Ĥ0 = ~ωc N̂a + ~ωmech N̂b − ~ k(t) N̂a
(
b̂† + b̂

)
, (1)

where ωc and ωmech are the oscillation frequencies of the
optical cavity mode and mechanical mode respectively,

with annihilation and creation operators â, â† and b̂, b̂†.

We have also defined N̂a = â†â and N̂b = b̂†b̂ as the
photon and phonon number operators.

The coupling k(t) is the (potentially time-dependent)
characteristic single-photon interaction strength between
the number of photons and the position of the mechani-
cal element. It takes on different forms depending on the
optomechanical platform in question. Modulation of the
optomechanical coupling can be introduced in different
ways depending on the experimental platform in ques-
tion. For example, the mechanical frequency of a can-
tilever can be modified by applying an oscillating electric
field [13, 14], and a modulated coupling arises naturally
through the micro-motion of a levitated system in a hy-
brid electro-optical trap [15–17].

The Hamiltonian (1) is often linearised for a strong
coherent input drive, however the fully nonlinear (in the
sense of the equations of motion) Hamiltonian is a more
fundamental description. While all quantum systems are
affected by noise, we here assume that the coherence
times can be made long enough for the measurement pro-
tocol to be carried out. As a result, our analysis explores
the bounds in the absence of environmental noise and de-
coherence. We then consider the gravitational field that
arises when a source mass is placed next to the sensor as
shown in figure 1. Since it is often difficult in experiments
to distinguish a signal against a constant noise floor, we
consider an oscillating source mass, which gives rise to a
time-dependent gravitational field.

When treating the system in a closed and ideal set-
ting, we can model the initial state as a separable state
of the light and the mechanical element. For the opti-
cal state, we consider injecting squeezed light into the
cavity. Squeezed light has been shown to fundamentally
enhance the sensitivity to displacements [9]. By includ-
ing squeezing here, we generalise our scheme to include
these input states. The state of the mechanical element,
on the other hand, is most accurately described as ther-
mal at a non-zero temperature. With these assumptions,
the initial state of the system can be written as

%̂(0) = |ζ〉〈ζ| ⊗
∞∑
n=0

tanh2n rT

cosh2 rT
|n〉〈n| , (2)

where |ζ〉 = Ŝζ |µc〉 is a squeezed coherent state of the

optical field where Ŝζ = exp
[
(ζ∗â2 − ζâ†2)/2

]
and where

the coherent state satisfies â |µc〉 = µc |µc〉. The squeez-
ing parameter can also be in spherical polar form as

ζ = rsq e
iϕ. The parameter rT of the thermal state arises

from the Bose–Einstein distribution and is defined by

tanh rT = exp
[
−~ωmech

2 kB T

]
, where T is the temperature of

the system and kB is Boltzmann’s constant.

II. CHAMELEON FORCE AND YUKAWA
POTENTIAL

To determine whether our analysis is valid in the case
of a chameleon field, we derive the time-dependent po-
tential that results from the source mass from first prin-
ciples, where we find that a potential that moves with
the mass is the correct choice for non-relativistic veloci-
ties. Another key consideration for optomechanical sys-
tems is the relatively large size of the optomechanical
probe which contributes significantly to the chameleon
screening of the fifth force in the envisioned setup of the
quantum experiment we consider here (as opposed to, for
example, cold atoms, where the screening length of the
atomic probes is very small). To take the finite screening
length into account, we go beyond the common approx-
imation that the probe radius is small compared to the
range of the chameleon field and derive analytic expres-
sions for the modified force seen by the probe.

The net effect of the chameleon scalar field φ is to
modify the effective Newtonian potential affecting a test
particle. In this work, we consider a chameleon model
with an effective self-interaction potential

Veff(φ) =
Λ4+n

φn
+
φρ

M
(~c)3. (3)

We explore only the case n = 1 in this work: other
models and choices of n are possible, but we choose this
specific example to demonstrate how the method works
in principle. This model has two parameters; Λ, which
characterises the energy scale of the chameleon’s self-
interaction potential; and M (here chosen to be a mass to
give the correct units for a potential), which determines
how strongly the chameleon field affects test particles and
arises from the non-minimal coupling of the chameleon
field to curvature.

For n = 1 the background value of the field, φbg, in an
environment of constant mass density ρbg is given by

φbg =

√
MΛ5

ρbg(~c)3
. (4)

In the centre of the source, the chameleon field reaches
its minimum value of φS . The mass of the chameleon
field, mbg, is density dependent and given by

mbgc
2 =

(
4 ρ3

bg(~c)9

M3Λ5

)1/4

. (5)

To obtain an expression for the chameleon field around
a spherical matter distribution, we use the same asymp-
totic matching approach as Burrage et al. [18]. In the
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limit where the probe radius is much smaller than the
distance between the probe and the source sphere RP �
|XS(t)|, we find the following expression for the force:

F =− GMSm

|XS(t)|2

[
1 + αbg,P

(
1 +
|XS(t)|
λbg

)
e−|XS(t)|/λbg×

× f(RP /λbg, |XS(t)|/λbg)

]
, (6)

where MS and m are the mass of the source sphere
and the probe sphere, respectively, λbg = ~

mbgc
and the

sensor-dependent fifth-force strength is defined as

αbg,P =
2M2

P

M2
ξS ξP , (7)

where we have added the subscript ’P ’ to denote that
screening from the probe is here taken into account,
MP ≈

√
~c/(8πG) = 4.341×10−9 kg is the Planck mass.

Furthermore, ξS and ξP (labelled S for the source and P
probe, respectively), are given by

ξS,P =

{
1, ρS,PR

2
S,P < 3M φbg/(~c),

1− S3
S,P

R3
S,P

, ρS,PR
2
S,P > 3Mφbg/(~c) .

(8)

where ρS,P and RS,P are the density and the radius of
the source/probe, respectively, and for the Chameleon
model we consider, Si with i = S, P is found by solving
a cubic equation. In the mbgRic/~ → 0 and φbg � φi
limits, this reduces to

Si = Ri

√
1− 8πM

3Mi

Riφbg

~c
, (9)

which is the result found by Burrage et al. [18]. Si
parametrises the screening effect of the chameleon mech-
anism for a spherical source/probe: for example, when Si
is much lower than Ri, the field is effectively unscreened
while for Si ≈ Ri the field is heavily screened. Finally,
the function f is a form-factor which approaches 1 in
the x = mbgRP c/~ = RP /λbg → 0 limit, in which case
equation (6) reduces to the result of Burrage et al. [18]
for the force between two spheres. Since spherical probes
or source masses generally maximise the screening [19],
equation (6) can be interpreted as a conservative estimate
of the screening due to the shielding from the probe.

In order to compute the sensitivity of the optomechan-
ical system, we need to include the force on the sensor
shown in equation (6) into the dynamics of the optome-
chanical system. We start by assuming that the source
mass and the mechanical element of the optomechanical
system are constrained to move along the x-axis. The
full optomechanical Hamiltonian including the modified
gravitational potential can then be written as

Ĥ(t) = Ĥ0 − GCha(t)xzpf

(
b̂† + b̂

)
, (10)

where Ĥ0 is given in equation (1) and where the time-
dependent modified Newtonian gravitational force is con-
tained in the second term.

(a)

(b)

FIG. 2. Comparison between predictions (this work) and
known experimental bounds (pink region). Both plots show
the convex hull (yellow) of the bounds derived in this work.
Plot (a) shows the bounds in terms of the Yukawa parame-
ters α and λ, while Plot (b) shows the bounds in terms of the
chameleon screening parameters M and Λ. Plot (b) also in-
cludes the bounds (yellow) for when the optomechanical probe
contributes to the screening of the chameleon field. The pink
areas represent the experimentally excluded regions based on
figure 8 of [20] and recent results presented in [21] (see fig-
ure 6). The experimentally excluded regions in (b) are based
on those reported in Ref [10].

It is possible to obtain the solution numerically, but
in order to obtain analytic expressions, we choose to lin-
earise the modification of the force for small oscillations
of the source-mass. We let the time-dependent distance
between the systems xS(t) be given by:

xS(t) = x0 (1− ε cos(ω0 t+ φ0)) , (11)

where ε is a dimensionless oscillation amplitude defined
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as a fraction of x0, where ω0 is the oscillation frequency
and φ0 is a phase shift that we specify later in order to
maximize the sensitivity. We obtain

GCha(t) ≈ −GMSm

x2
S(t)

−mgN (κ+ σε cos(ω0 t+ φ0)) .

(12)

For the parameter regimes considered in this work, we
find that κ and σ are

κ = αbg,P e
−x0/λbg

(
1 +

x0

λbg

)
,

σ = αbg,P e
−x0/λbg

(
2 + 2

x0

λbg
+

x2
0

λ2
bg

)
. (13)

If the screening of both source and probe can be ne-
glected, we obtain the limit αbg,P → α and λbg → λ
and the effect of the Chameleon force can be associated
with a conventional Yukawa potential

V (r) = −GMSm

r

(
1 + α e−r/λ

)
, (14)

where α parametrises the intrinsic difference in strength
between the Yukawa-like fifth force and gravity, while λ
parametrises the range of this fifth-force.

III. FUNDAMENTAL SENSITIVITY BOUNDS

Using tools from quantum information theory and
quantum metrology such as the Quantum Fisher Infor-
mation (QFI), we are then able to estimate the funda-
mental sensitivity for detecting deviations from Newto-
nian gravity. The connection to sensitivity stems from
the fact that the QFI provides a lower bound to the
variance Var(θ) of θ through the quantum Cramér–Rao
bound [22, 23]:

Var(θ) ≥ 1

MIθ
, (15)

whereM is the number of measurements or probes used
in parallel. The standard deviation of θ is then given
by ∆θ = 1/

√
MIθ. For unitary dynamics and mixed

initial states written in the form of %̂ =
∑
n λn |λn〉〈λn|,

the QFI can be written in dependence of the operator

Ĥθ = −iÛ†θ∂θÛθ, where Ûθ is the unitary operator that
encodes the parameter θ into the system. In our case,
Û(θ) is the unitary operator that arises from the Hamil-
tonian in equation (10), and the effect we wish to esti-
mate is the effect of the Chameleon force on the probe.
Therefore, in order to compute Iθ, we must first solve the
time-evolution of the system, which is often challenging
when the signal is time-dependent, as is the case for us
here. Some of these challenges can however be addressed
by making use of a previously established method for
solving the Schrödinger equation using a Lie algebra ap-
proach [24]. Details of this solution were first used to

study a purely Newtonian time-dependent gravitational
potential [25].

We obtain a compact expression for the QFI that rep-
resents the sensitivity with which modifications to New-
tonian gravity can be detected. In our case, we let the
parameter θ of interest be either κ or σ. By then apply-
ing the Cramér–Rao bound, we can derive the standard
deviation for each parameter. We then consider the ra-
tios ∆κ/κ or ∆σ/σ, which describe the relative error of
the collective measurements. In this work, we say that
we can distinguish modifications to the Newtonian po-
tential if the error in κ and σ is smaller than one, that
is, when ∆κ/κ < 1 or ∆σ/σ < 1. Note that, to find
the sensitivity to the actual values of, for example, α and
λ, we would need a full multi-parameter likelihood anal-
ysis, which requires us to go beyond the regular error-
propagation formula for the parameter we consider here.
Such an analysis is currently beyond the scope of this
work. Instead, we focus mainly on detecting σ, since it
is the amplitude of the time-dependent signal.

IV. RESULTS AND CONCLUSIONS

For the case of constant optomechanical coupling, we
find that the sensitivities ∆κ and ∆σ are given by

∆κ =
1√
M gN

1

∆N̂a

√
2~ω5

mech

m

1

8π n k0
, (16)

∆σ =
1√
M gN

1

∆N̂a

√
2~ω5

mech

m

1

4π n k0 ε
, (17)

where n is an integer, and for an optomechanical cou-
pling k(t) ≡ k0 and phase φ0 = π, and where the vari-

ance (∆N̂a)2 of the photon number can be optimized by
choosing e−iϕ/2µc is completely imaginary as [25]

(∆N̂a)2 =|µc|2e4rsq +
1

2
sinh2(2 rsq) . (18)

When choosing a sinusoidal modulation with k(t) =
k0 cos(ωk t), where k0 is the amplitude of the modula-
tion and ωk is the modulation frequency, we find that
∆κ is increase by a factor 2 and ∆σ is decreased by a
factor 2/(πn).

Our main results include the bounds presented
in figure 2, which shows the parameter ranges of
modified gravity theories that could potentially
be excluded with an ideal optomechanical sen-
sor. The bounds are computed for a specific set
of experimental parameters. To facilitate investi-
gations into additional parameter regimes, we have
made the code used to compute the bounds avail-
able (https://github.com/sqvarfort/modified-gravity-
optomech). While experiments are unlikely to achieve
the predicted sensitivities due to noise and systematic
effects, our bounds constitute a fundamental limit for
excluding effects beyond Newtonian gravity given the

https://github.com/sqvarfort/modified-gravity-optomech
https://github.com/sqvarfort/modified-gravity-optomech
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experimental parameters in question. Such effects are
discussed in detail in the discussion section of our article
together with forces that arise from the Casimir effect.

Our results show that optomechanical sensors could,
in principle, be used to improve on existing experimental
bounds for the chameleon screening mechanism, although
more work is needed to evaluate the prospects for using
experimental optomechanical systems as probes for mod-
ified gravity.
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by the Göran Gustafsson Foundation for Research in Nat-
ural Sciences and Medicine, by the Royal Society, and
partially supported by the UCL Cosmoparticle Initiative
and the European Research Council (ERC) under the
European Community’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement number 306478-
CosmicDawn.

[1] Qvarfort S, Rätzel D and Stopyra S 2022 New Journal
of Physics 24 033009 URL https://doi.org/10.1088/

1367-2630/ac3e1b

[2] Padilla A 2015 arXiv preprint arXiv:1502.05296
(Preprint 1502.05296)

[3] Will C M 2006 Living Reviews in Relativity 9 3
(Preprint gr-qc/0510072) URL https://doi.org/10.

12942/lrr-2006-3

[4] Shapiro S S, Davis J L, Lebach D E and Gregory J S
2004 Physical Review Letters 92(12) 121101 URL https:

//link.aps.org/doi/10.1103/PhysRevLett.92.121101

[5] Bertotti B, Iess L and Tortora P 2003 Nature 425 374–
376 URL http://adsabs.harvard.edu/abs/2003Natur.

425..374B

[6] Khoury J and Weltman A 2004 Physical Reviow
Letters 93 171104 URL https://doi.org/10.1103/

PhysRevLett.93.171104

[7] Khoury J and Weltman A 2004 Physical Review
D 69(4) 044026 URL https://link.aps.org/doi/10.

1103/PhysRevD.69.044026

[8] Brax P, van de Bruck C, Davis A C, Khoury J and Welt-
man A 2004 Physical Review D D70 123518 (Preprint
astro-ph/0408415)

[9] Giovannetti V, Lloyd S and Maccone L 2006 Physical
Review Letters 96 010401 URL https://doi.org/10.

1103/PhysRevLett.96.010401

[10] Burrage C and Sakstein J 2018 Living reviews
in relativity 21 1 URL https://doi.org/10.1007/

s41114-018-0011-x

[11] Bowen W P and Milburn G J 2015 Quantum
Optomechanics (CRC Press)

[12] Aspelmeyer M, Kippenberg T J and Marquardt F 2014
Reviews of Modern Physics 86 1391 URL https://doi.

org/10.1103/RevModPhys.86.1391

[13] Rugar D and Grütter P 1991 Physical Review Letters
67 699 URL https://doi.org/10.1103/PhysRevLett.

67.699

[14] Szorkovszky A, Brawley G A, Doherty A C and Bowen
W P 2013 Physical Review Letters 110 184301 URL
https://doi.org/10.1103/PhysRevLett.110.184301

[15] Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro
T S and Barker P F 2015 Physical Review Letters

114(12) 123602 URL https://link.aps.org/doi/10.

1103/PhysRevLett.114.123602

[16] Aranas E B, Fonseca P Z G, Barker P F and Monteiro
T S 2016 New Journal of Physics 18 113021 URL https:

//doi.org/10.1088/1367-2630/18/11/113021

[17] Fonseca P Z G, Aranas E B, Millen J, Monteiro T S
and Barker P F 2016 Physical Review Letters 117
173602 URL https://doi.org/10.1103/PhysRevLett.

117.173602

[18] Burrage C, Copeland E J and Hinds E A 2015 Journal
of Cosmology and Astroparticle Physics 1503 042 URL
https://doi.org/10.1088/1475-7516/2015/03/042

[19] Burrage C, Copeland E J, Moss A and Stevenson J A
2018 Journal of Cosmology and Astroparticle Physics 01
056 URL https://doi.org/10.1088/1475-7516/2018/

01/056

[20] Murata J and Tanaka S 2015 Classical and Quantum
Gravity 32 033001 URL https://doi.org/10.1088%

2F0264-9381%2F32%2F3%2F033001

[21] Tan W H, Du A B, Dong W C, Yang S Q, Shao
C G, Guan S G, Wang Q L, Zhan B F, Luo P S,
Tu L C and Luo J 2020 Physical Review Letters
124(5) 051301 URL https://link.aps.org/doi/10.

1103/PhysRevLett.124.051301

[22] Cramér H 1946 Scandinavian Actuarial Journal 1946
85–94 URL http://www.tandfonline.com/doi/pdf/10.

1080/03461238.1946.10419631

[23] Rao C R 1992 Information and the accuracy at-
tainable in the estimation of statistical parameters
Breakthroughs in statistics (Springer) pp 235–247
URL https://link.springer.com/chapter/10.1007/

978-1-4612-0919-5_16

[24] Wei J and Norman E 1963 J. Math. Phys. 4 575–581
URL https://doi.org/10.1063/1.1703993

[25] Qvarfort S, Plato A D K, Bruschi D E, Schneiter
F, Braun D, Serafini A and Rätzel D 2021 Physical
Review Research 3 013159 URL https://doi.org/10.

1103/PhysRevResearch.3.013159

https://doi.org/10.1088/1367-2630/ac3e1b
https://doi.org/10.1088/1367-2630/ac3e1b
https://doi.org/10.12942/lrr-2006-3
https://doi.org/10.12942/lrr-2006-3
https://link.aps.org/doi/10.1103/PhysRevLett.92.121101
https://link.aps.org/doi/10.1103/PhysRevLett.92.121101
http://adsabs.harvard.edu/abs/2003Natur.425..374B
http://adsabs.harvard.edu/abs/2003Natur.425..374B
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://link.aps.org/doi/10.1103/PhysRevD.69.044026
https://link.aps.org/doi/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/PhysRevLett.67.699
https://doi.org/10.1103/PhysRevLett.67.699
https://doi.org/10.1103/PhysRevLett.110.184301
https://link.aps.org/doi/10.1103/PhysRevLett.114.123602
https://link.aps.org/doi/10.1103/PhysRevLett.114.123602
https://doi.org/10.1088/1367-2630/18/11/113021
https://doi.org/10.1088/1367-2630/18/11/113021
https://doi.org/10.1103/PhysRevLett.117.173602
https://doi.org/10.1103/PhysRevLett.117.173602
https://doi.org/10.1088/1475-7516/2015/03/042
https://doi.org/10.1088/1475-7516/2018/01/056
https://doi.org/10.1088/1475-7516/2018/01/056
https://doi.org/10.1088%2F0264-9381%2F32%2F3%2F033001
https://doi.org/10.1088%2F0264-9381%2F32%2F3%2F033001
https://link.aps.org/doi/10.1103/PhysRevLett.124.051301
https://link.aps.org/doi/10.1103/PhysRevLett.124.051301
http://www.tandfonline.com/doi/pdf/10.1080/03461238.1946.10419631
http://www.tandfonline.com/doi/pdf/10.1080/03461238.1946.10419631
https://link.springer.com/chapter/10.1007/978-1-4612-0919-5_16
https://link.springer.com/chapter/10.1007/978-1-4612-0919-5_16
https://doi.org/10.1063/1.1703993
https://doi.org/10.1103/PhysRevResearch.3.013159
https://doi.org/10.1103/PhysRevResearch.3.013159

	A summary of: Constraining modified gravity with quantum optomechanics
	Abstract
	Introduction
	Chameleon force and Yukawa potential
	Fundamental sensitivity bounds
	Results and Conclusions
	Acknowledgments
	References


