23rd International Conference on General Relativity and Gravitation Liyang, China, July 3-8, 2022

Photon helicity and quantum anomalies in curved spacetimes

Vatican Observatory

Matteo Galaverni

Based on M.G. and Gabriele Gionti, SJ published in: <u>Gen.Rel.Grav. 53 (2021) 4, 46</u> e-Print: <u>2012.02583 [gr-qc]</u>

Electromagnetic duality and helicity conservation

It is well known that in absence of sources **Maxwell equations** are **invariant** under rotation of electric and magnetic field into each other (**electromagnetic duality**):

$$\nabla \cdot \mathbf{E} = 0, \ \nabla \times \mathbf{B} - \mu \epsilon \frac{\partial \mathbf{E}}{\partial t} = 0,$$
$$\nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0,$$
$$\mathbf{B} \rightarrow \mathbf{B} \cos \theta - \sqrt{\mu \epsilon} \mathbf{E} \sin \theta,$$
$$\nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0,$$
$$\nabla \cdot \mathbf{E} = 0, \ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0,$$
$$\nabla \cdot \mathbf{E} = 0, \ \nabla \times \mathbf{E} - \mu \epsilon \frac{\partial \mathbf{E}}{\partial t} = 0,$$

This invariance is associated with the **conservation of polarization properties** of electromagnetic waves during propagation in free space:

Classical symmetries and quantum anomalies

Not every symmetry of a **classical field theory**...

At classical level helicity is conserved.

...is also a symmetry in **quantum field theory**

Photon helicity

There are **different definitions** of photon helicity present in literature!

• **Magnetic helicity** defined in terms of the magnetic potential \mathbf{A} ($\mathbf{B} = \nabla \times \mathbf{A}$)

$$\mathcal{H}_{\text{mag}} \equiv \frac{1}{2} \sqrt{\frac{\epsilon}{\mu}} \int_{\mathbf{R}^3} \underline{\mathbf{A} \cdot (\nabla \times \mathbf{A})} \, d^3 \mathbf{x}$$

If magnetic helicity is NOT conserved the **linear polarization angle rotates** during propagation in space.

Electromagnetic helicity defined in terms of A and the electric potential C (D = εE = -∇ × C)

$$\mathcal{H}_{\rm em} \equiv \frac{1}{2} \int_{\mathbf{R}^3} \left[\sqrt{\frac{\epsilon}{\mu}} \mathbf{A} \cdot (\nabla \times \mathbf{A}) + \sqrt{\frac{\mu}{\epsilon}} \mathbf{C} \cdot (\nabla \times \mathbf{C}) \right] d^3 \mathbf{x}$$

If electromagnetic helicity is NOT conserved the **degree of circular polarization is not conserved**.

Starting from a **manifestly invariant Lagrangian** we showed that the Noether current associated with duality transformations is the **electromagnetic helicity**.

Conclusions

- In literature there was no agreement on macroscopic effects of helicity non conservation:

 -magnetic helicity: rotation of linear polarization;
 -electromagnetic helicity: change of circular polarization degree.
- Using the Noether theorem we showed that the charge associated with **duality transformations** is **electromagnetic helicity**.
- We discuss the effect for some spacetimes (e.g. Kerr metric) and conclude that in order to have effects we have to consider spacetimes with no mirror symmetries (give up stationarity).

For more details and references see:

https://link.springer.com/ article/10.1007/s10714-021-02817-z or: https://inspirehep.net/lit erature/1835081