Modest holography and bulk reconstruction in asymptotically flat spacetimes

Finnian Gray 1,2 Erickson Tjoa* 2,3

¹Perimeter Institute for Theoretical Physics

²Department of Physics and Astronomy, University of Waterloo

³Institute for Quantum Computing

Main result

- The celebrated result of Dappiaggi, Moretti, and Pinamonti (2006) [1] establishes bulk-to-boundary correspondence between bulk and boundary scalar fields in asymptotically flat spacetimes \mathcal{M} and its null boundary \mathscr{I} .
- We show that this can be promoted to "modest holographic reconstruction" of geometric data by augmenting it with a "metric reconstruction" from bulk (Feynman) propagators inspired by Saravani, Aslanbeigi and Kempf (2015) [6]. The reconstruction using bulk Wightman correlators, exploiting Hadamard property of the state was first used by Perche and Martín-Martínez (2021) [5].

Ingredients for holographic reconstruction

Suppose $\mathcal M$ is asymptotically simple so that $\mathscr I$ is the null boundary. The physical inputs are:

- Scalar field in the bulk \mathcal{M} , specified by the symplectic space of solutions $\operatorname{Sol}_{\mathbb{R}}(\mathcal{M})$ and Weyl algebra of observables $\mathcal{W}(\mathcal{M})$ obeying canonical commutation relations (CCR). The equation of motion is $(\nabla_a \nabla^a \frac{1}{6}R)\phi = 0$, and all solutions in $\operatorname{Sol}_{\mathbb{R}}(\mathcal{M})$ are of the form $\phi = Ef$, where E is causal propagator and f is compactly-supported test functions on \mathcal{M} .
- Scalar field theory at future null infinity \mathscr{I}^+ , with symplectic space of "solutions" $\operatorname{Sol}_{\mathbb{R}}(\mathscr{I}^+)$ and its associated Weyl algebra of observables $\mathcal{W}(\mathscr{I}^+)$. There is no equation of motion at \mathscr{I}^+ , so $\operatorname{Sol}_{\mathbb{R}}(\mathscr{I}^+)$ contains smooth functions on \mathscr{I}^+ such that $\psi, \partial_u \psi \in L^2(\mathscr{I}^+, \operatorname{d} u \operatorname{d} \mu_{S^2})$.

Examples of asymptotically flat spacetimes

Figure 1. Penrose diagram for Minkowski space (left) and asymptotically flat radiation-dominated Friedmann-Robertson-Walker universe (right). Arrows denote light rays projecting to future null infinity \mathscr{I}^+ .

Theorem (Dappiaggi, Moretti, Pinamonti, 2006 [1])

Suppose there exists a projection map $\Gamma: \mathbf{Sol}_{\mathbb{R}}(\mathcal{M}) \to \mathbf{Sol}_{\mathbb{R}}(\mathscr{I}^+)$ with the property that

- ullet $\Gamma \mathsf{Sol}_{\mathbb{R}}(\mathcal{M}) \subset \mathsf{Sol}_{\mathbb{R}}(\mathscr{I}^+)$, and
- $\bullet \ \sigma(\phi_1,\phi_2) = \sigma_{\mathscr{I}}(\Gamma\phi_1,\Gamma\phi_2).$

Then there exists an injective *-homomorphism $\iota:\mathcal{W}(\mathcal{M})\to\mathcal{W}(\mathscr{I}^+)$ such that

$$\iota(W(\phi)) = w(\Gamma\phi),$$

Furthermore, given the boundary state $\omega_{\mathscr{I}}: \mathcal{W}(\mathscr{I}^+) \to \mathbb{C}$, we get an induced bulk state $\omega \coloneqq \iota^*\omega_{\mathscr{I}}: \mathcal{W}(\mathcal{M}) \to \mathbb{C}$ such that

$$\omega(W(\phi)) = \omega_{\mathscr{I}}(w(\Gamma\phi)).$$

Modest holography

If there is a projection map Γ such that the entire solution space $\operatorname{Sol}_{\mathbb{R}}(\mathcal{M})$ can be projected into $\operatorname{Sol}_{\mathbb{R}}(\mathscr{I}^+)$, then there is *injective mapping* between the bulk and boundary correlators. This projection map exists in Minkowski space, but it is currently an *assumption* in generic asymptotically flat spacetimes [3].

Furthermore, if the boundary algebraic state $\omega_{\mathscr{I}}: \mathcal{W}(\mathscr{I}^+) \to \mathbb{C}$ is a quasifree and **BMS-invariant** (Bondi-Metzner-Sachs group, the group of asymptotic symmetries of \mathcal{M}) [2, 4], then the pullback $\omega \coloneqq \iota^*\omega_{\mathscr{I}}$ defines a bulk algebraic state $\omega: \mathcal{W}(\mathcal{M}) \to \mathbb{C}$ that is

- a quasifree Hadamard state, and
- ullet invariant under the full Killing symmetries of the bulk geometry ${\cal M}.$

Bulk and boundary two-point functions for quasifree states

More concretely, let $\hat{\phi}(f)$ be smeared bulk field operator and $\hat{\varphi}(\psi)$ be smeared boundary field operator so that $W(Ef) \equiv \exp(i\hat{\phi}(f)) \in \mathcal{W}(\mathcal{M})$ and $w(\psi) \equiv \exp(i\hat{\varphi}(\psi)) \in \mathcal{W}(\mathscr{I}^+)$.

If the bulk state is a Hadamard quasifree state with Wightman two-point function $\mathbf{W}(f,g) \coloneqq \omega(\hat{\phi}(f)\hat{\phi}(g))$, then the corresponding boundary two-point function is

$$\mathbf{W}_{\mathscr{I}}(\psi_f,\psi_g)\coloneqq \omega_{\mathscr{I}}(\hat{\varphi}(\psi_f)\hat{\varphi}(\psi_g)) = -\frac{1}{\pi}\lim_{\epsilon\to 0}\int \mathrm{d} u\,\mathrm{d} u'\mathrm{d}^2x^A\,\frac{\psi_f(u,x^A)\psi_g(u',x^A)}{(u-u'-\mathrm{i}\epsilon)^2}\,,$$

where x^A are coordinates on unit sphere S^2 and the boundary smearing functions is related to the bulk smearing function f via

$$\psi_f = \Gamma E f \sim \lim_{\mathscr{O}^+} r E f \,,$$

with r the radial coordinate in Bondi gauge.

Example: correlators in radiation-dominated FRW spacetime

Figure 2. Modest holography between a pair of timelike-separated points with $\Delta \eta = \alpha$ with scale factor $a(\eta) = H\eta$.

Holographic reconstruction in asymptotically flat spacetimes

In [5], it was shown that given two spacetime points $\mathbf{x} \equiv x^{\mu}$ and $\mathbf{x}' \equiv x'^{\nu}$,

$$g_{\mu\nu}(\mathbf{x}) = -\frac{1}{8\pi^2} \lim_{\mathbf{x}' \to \mathbf{x}} \partial_{\mu} \partial_{\nu'} \mathbf{W}(\mathbf{x}, \mathbf{x}')^{-1},$$

where W(x, x') is the *unsmeared* bulk Wightman two-point function associated to some Hadamard state ω . Since in AQFT we need *smeared* correlators, we use *finite-difference*:

$$g_{\mu\nu}(\mathbf{x}) \approx -\frac{1}{8\pi^2\delta^2} \left[\frac{1}{\mathsf{W}(f_\epsilon,g_\epsilon)} - \frac{1}{\mathsf{W}(f_\epsilon,g)} - \frac{1}{\mathsf{W}(f,g_\epsilon)} + \frac{1}{\mathsf{W}(f,g)} \right].$$

Modest holography replaces all the bulk correlators with the boundary correlators:

$$g_{\mu\nu}(\mathbf{x}) \approx -\frac{1}{8\pi^2 \delta^2} \left[\frac{1}{\mathsf{W}_{\mathscr{I}}(\psi_{f_{\epsilon}}, \psi_{g_{\epsilon}})} - \frac{1}{\mathsf{W}_{\mathscr{I}}(\psi_{f_{\epsilon}}, \psi_g)} - \frac{1}{\mathsf{W}_{\mathscr{I}}(\psi_{f}, \psi_{g_{\epsilon}})} + \frac{1}{\mathsf{W}_{\mathscr{I}}(\psi_{f}, \psi_g)} \right].$$

Note that the unsmeared two-point function at \mathscr{I}^+ has universal form

$$\mathsf{W}_{\mathscr{I}}(u,x^A;u',y^A) \propto \frac{\delta_{S^2}(x^A-y^A)}{(u-u'-\mathrm{i}\epsilon)^2}.$$

Thus smeared correlators are necessary for this reconstruction. The bulk geometric information is partially encoded in the boundary data (the boundary smearing functions) ψ_f .

References

- [1] C. Dappiaggi, V. Moretti, and N. Pinamonti. Rigorous steps towards holography in asymptotically flat spacetimes. *Rev. Math. Phys.*, 18:349–416, 2006.
- [2] E. E. Flanagan, K. Prabhu, and I. Shehzad. Extensions of the asymptotic symmetry algebra of general relativity. *JHEP*, 01:002, 2020.
- [3] R. P. Geroch. Null infinity is not a good initial data surface. *J. Math. Phys.*, 19:1300–1303, 1978.
- [4] V. Moretti. Quantum out-states holographically induced by asymptotic flatness: Invariance under spacetime symmetries, energy positivity and Hadamard property. *Commun. Math. Phys.*, 279:31–75, 2008.
- [5] T. R. Perche and E. Martín-Martínez. Geometry of spacetime from quantum measurements. *Phys. Rev. D*, 105(6):066011, 2022.
- [6] M. Saravani, S. Aslanbeigi, and A. Kempf. Spacetime curvature in terms of scalar field propagators. *Phys. Rev.* D, 93:045026, Feb 2016.

