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Objectives

Review of the key results and current progress of
the Scale Invariant Vacuum (SIV) idea within the
Weyl Integrable Geometry (WIG) paradigm:

•Comparing a(t) within ΛCDM and SIV.
•Scale-Invariant Dynamics of Galaxies.
•SIV & the growth of the density fluctuations .
•SIV and the Inflation of the Early Universe.

Motivation

Scale Invariance and Physical Reality

•The laws of physics change upon change of scale!
Consistent units is paramount for dimensional
estimates. Matter usually defines a relevant scale.
•However, an empty Universe is scale invariant!

Maxwell equations are scale invariant in vacuum.
The field equations of GR are scale invariant for
empty space with no cosmological constant.
•At what scale and in which systems scale

invariance is possible and actually manifested?

Einstein GR & Weyl Integrable Geometry.

• In GR metric-compatible connection guarantees
δ ‖−→v ‖= 0 along a geodesic.
•Could the Dark Matter and Dark Energy

phenomena be artifacts of deviations δ ‖−→v ‖ ≈ 0
that accumulate over cosmic distances?
• In Weyl Integrable Geometry

u
δ ‖−→v ‖= 0 along

a closed loop - this defeats the Einstein objection!

Backgrownd

WIG and Dirac co-calculus [1, 2]:

•Weyl Geometry uses gµν , kµ, and a scalar field λ .
•Covariant derivatives based on Dirac co-calculus.
• In the Weyl Integrable Geometry kµ =−∂µ ln(λ ).

Gauge change and derivatives:
Einstein GR objects have prime “′” otherwise WIG.
• l′→ λ (x)l⇔ ds′ = λds ⇒ g′µν = λ 2gµν,
• co-tensor of power n: Y ′µν → λ nYµν,
• co-scalar of power n: S∗µ = ∂µS−nkµS,
• for co-vector of power n:

Aν∗µ = ∂µAν−nkνAµ−∗Γα
νµAα,

• for co-co-vector of power n:
Aν
∗µ = ∂µAν−nkνAµ +

∗Γν
µαAα,

•where ∗Γν
µα = Γν

µα +gµαkν−gν
µkα−gν

αkµ.

Cosmology in Scale Invariant gauge:
Ricci tensor & scalar in Weyl and Einstein’
frames, Dirac [2] and by Canuto et al. [3].

R = R′+6κ
α

κα−6κ
α
α ,

Rµν = R′µν− (κµ;ν +κν ;µ +2κµκν)+

+gµν(2κ
α

κα−κ
α
;α).

Einstein Equation:
Rµν−gµνR/2 =−8πGTµν−Λgµν ,

R′µν−gµνR′/2− (κµ;ν +κν ;µ +2κµκν)+

+gµν(2κ
α
;α−κ

α
κα) =−8πGTµν−λ

2
ΛE gµν .

The FLRW equations for Scale Invariant Cosmology

FLRW equations within the WIG were first derived in 1977 by Canuto et al. [3] and in 2017 by Maeder [4].
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Scale Invariant Vacuum gauge (T=0 and R’=0) Maeder [4]

The SIV vacuum Tµν = 0 and R′µν = 0 satisfies: κµ;ν +κν ;µ +2κµκν−2gµνκ
α
;α +gµνκ

α
κα =Λgµν , (2)

Corollary (2017) by Maeder [4]: For homogeneous and isotropic WIG-space, where ∂iλ = 0, only κ0 =
−λ̇/λ and its time derivative κ̇0 =−κ2

0 are non-zero, then from (2) one has pair of equivalent equations:
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In SIV gauge (3) the cosmological constant disappears from the FLRW equations (1):
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Comparing ΛCDM and SIV [4, 5]
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Figure 1: Expansion rates a(t) as a function of time t in the
flat (k = 0) ΛCDM and SIV models in the matter dominated
era. The curves are labeled by the values of Ωm.

Growth of the density fluctuations [6]
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Figure 2: Initial value δ = 10−5 at z = 1376 and Ωm = 0.10. The two light broken
curves show models with initial (z+1) = 3000 and 500, with same Ωm = 0.10 and n = 2.

Dwarf Spheroidals, SIV, and MOND [7]
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Figure 3: Radial Acceleration Relation (RAR) of gobs and gbar
for the galaxies studied by Lelli et al. (2017). The blue curve
shows the relation predicted by the SIV [7]. The red curve
gives the MOND relation, while the orange shows the 1:1-line.

Key SIV Results:

•The SIV is a viable alternative to ΛCDM.
– In SIV gauge (3) the cosmological constant disappears.
–Diminishing differences at big densities (Fig. 1) [4, 5].
– SIV has fast growth of the density fluctuations (Fig.2) [6].
–Correct RAR for dwarf spheroidals (Fig.3) [7].

•Early inflation is also natural within the SIV
cosmology with a graceful exit from inflation [8].
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