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Introduction 

The vector particles quasibound states were of recent interest [12]. The authors of the cited 

article given a very comprehensive and almost exhaustive analysis of the problems involving 

vector ( Proca) mass particles quasi bound states, including the case of a small rotation of a 

Black Hole ( a<<M), when the quasibound state timelifes ( dampings) and energies should vary 

very small from the timelifes ( dampings) and energies in a Schwarzschild field. Let us mention , 

that the vector mass particles timelifes around Schwarzschild Black holes were investigated for a 

first time in the works [8, 9]. Later this investigation was repeated in the Conference article [10 ], 

which given a various result and this fact, perhaps, as well as the obscurity of the Conference on 

General Relativity and Gravitation held in 1988 in Yerevan influenced a series of authors from 

the West ( see, e.g.  [11]) to compute again from anew the problem as a whole.  

Unfortunately, no a definite and clear results were obtained, as can be seen from ours analysis 

given bellow, so that the problem remained still unclear till the article [12] appeared. The 

formula presented in  [12] give us the hope, that a qualitatively correct analysis has finally been 

given, with taking account of fine and hyperfine interactions between the spin of the test vector 

particle and the gravitational field of an almost nonrotating Black hole ( nearly Schwarzschild 

Black hole) , as well as of the spin- spin interaction between a slowly rotating Kerr Black hole 

and the spin of a vector particle. This 2 new interactions put into discussion and consideration in 

the article   [12] for a first time, allow us to hope that the most complicated case of a Kerr 

spacetime and vector mass particles would be finally solved successfully.  

The purpose of this short poster,  is to show to researchers of the problem a completely another 

way of treatment of the problem. Namely: Let us examine from the beginning not the bound ( 

quasi bound , when the damping is small) problem, but the scattering problem, when the motion 

of a particle is infinite, or E  > mc^2. In this case , which is historical one in the framework of 

quantum mechanical research in the Black holes backgrounds, a lot of investigations were made 

concerning scalar and Dirac particles, which , to my opinion, would be redundant to cite in this 

short letter.  They are well known. It is important, that this scattering case widely investigated for 

scalar ( Klein – Gordon) equation  and Dirac equation easily lead to the finite motion case 

motion , if apply the scattering matrix and calculate the poles of the scattering matrix. This has 

been shown for a first time in the article [13] . Or , it has been shown that the problems of 

infinite motion of mass  particles in the field of Black holes is equivalent to the problem of finite 

motion of mass particles,  because the poles of the  S- matrix allow to calculate the bound states  

energies and the dampings ( time lifes , let us recollect , that the time lifes are just the inverse of 

dampings) or time lifes of mass particles on bound states. 

The results obtained here can be easily used for the case of slowly rotating ( Kerr) black holes. 
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Scalar and Dirac particles scattering 

In the work [1] ( see, equation (2.77) at the page 70, the PDF of PhD is available through 

inspirehep server) has been shown, that the ratios 

𝜉 ≡
𝛾

𝑇(𝜔=𝜇)
 = constant =  

1

2𝜋
(𝜇𝑀)2 (𝑛+𝑙)!

(𝑛−𝑙−1)!𝑛4+2𝑙                                                           (1) 

where 𝛾 − is damping of a quasibound level with 𝜔 ≤ 𝜇,   𝑇(𝜔) − transmission (absorption) 

coefficient of a partial wave with 𝜔 > 𝜇 .  I use here and I shall use bellow almost everywhere 

the system of units c = ℏ = 𝐺 = 1 , if the inverse is not evident. The constant ratio in the 

formula (1) does not depends on the spin of the particles, and this property  follows from the S-

matrix scattering theory in a gravitational field. A general case for the scalar mass field was 

examined in the paper [2], while another cases follow from the property of spin ½ field 

established in (1). I shall extrapolate this property bellow for mass vector particles also. 

A general expression  for the damping of levels for a vector (Proca) test particles field in a 

Schwarzschild external gravitational field was found  in the  [8] in a long wavelength limit, a 

little bit later a generalization for a slowly charged Schwarzschild Black hole has been given in 

[9], while another calculation  for the same problem has been given in [10].  

Vector particles scattering 

Unfortunately, the results in the limit of Schwarzschild field in [8] and [9] varies 

unsignificantly. Namely, the expression in the formula on page 5 of ref. [9] varies in a 

denominator  from the expression in a formula (15) of the ref. [9] as 
1

2𝑙+1
 with  

1

2𝑙+3
 , for   𝑠 = ±1  

which would lied to a difference of  the order of 86%  in the timelife of the vector particle in a 

bound state with 𝑠 = ±1. 

But the result in the reff. [10] differs much more significantly. The dumping of the mass  Proca 

vector field quasibound levels  has been found in (4) (see also (5)) of the reff. [9 ] and has the 

following view: 

𝛾𝑙
𝑃𝑟𝑜𝑐𝑎 =                                                                                                                             (2) 

= 𝜋(2√2𝜇𝑀)
4𝑙+6 (𝑙 + 𝑛)!

(𝑛 − 𝑙 − 1)! (2𝑙)! (2𝑙 + 1)! (2𝑛)4𝑙+6
{

1, 𝑓𝑜𝑟 𝑠 = 0

√
[𝑛2 − (𝑙 + 1)2](2𝑙 − 1)2(2𝑙 − 2)

(𝑛2 − 𝑙2)(2𝑙 + 3)(2𝑙 + 2)2
, 𝑠 = ±1

} 

Where 𝑛 = 𝑙 + 𝑛𝑟 + 1 + 𝑠 , 𝑙 − orbital quantum number, 𝑛𝑟 − radial quantum number, 𝑠 =

0, −1, +1,  possible spin projections on a chosen axis of symmetry,  𝜇 − mass of the Proca test 

field, 𝑀 − mass of the Black Hole, which is supposed to be a Schwarzschild one.  

It is to note, that the formula (2) is losing its meaning for 𝑛𝑟 = 0, 𝑆 = −1 – it becomes divergent, 

while for 𝑙 = 1, 𝑆 = ±1  it gives absolutely stable orbits. To my opinion this is due to absence of 

the fine and hyperfine interaction terms, which would transform the formula (2) into obvious 

decaying one.   

Let us reproduce the result in the reff. [10]. The  energy  of the quasilevel is 
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𝜔 = 𝜇 (1 −
𝜇2𝑀2

2(𝑛+𝜎)2),                                                               (3) 

Then the authors of [10] use  𝑗 = 𝑙 + 1 for the total momentum, 𝑛 = 𝑗 + 𝑛𝑟 + 𝑠  for the principal 

quantum number, so that the damping is: 

 

𝛾 = 4(𝜇𝑀)4𝑙+5 (2𝑙 + 𝑛 + 1)!
[(𝑙+1+𝑠)!(𝑙−1+𝑠)!]2

𝑛!(𝑙+𝑛+𝑠+2)2(2𝑙+2)!(2𝑙+3)!
                      (4) 

A discouraging feature of the results (2) and (4) is discrepancy in the leading power of the there 

small parameter: 

𝜇𝑀 =
𝐺𝜇𝑀

ℏ𝑐
                                                        (5) 

which represents the strength of the Newtonian  attraction between vector particle and the force 

center  entering to both formula. This discrepancy by an order of magnitude would lead to rather 

great variations for     𝜇𝑀 ≪ 1  . 

An alternate calculation for this case has been given in [11], where the main accent was put on 

the numerical calculations. The main equations, from which the damping can be derived are (64) 

(for odd modes, S=0), and (81) and (82).  For odd modes they conclude that the previous 

calculations in [8] are confident only for great orbital numbers ≫ 1 , although  an explicit 

calculation of damping for lowest states they do not give. Unfortunately, the equation (82) which 

was derived for even modes ( 𝑆 = ±1)   do not lead from (81). It contains a mistake in derivation  

so that the authors of [11] limited themselves further  to numerical calculations of the damping.  

Their result for total energy is (for  odd (S=0) parity modes: 

𝜔 ≅ 𝜇 (1 −
(𝜇𝑀)2

2(𝑙+1+𝑛)2)                                                                             (6) 

 

The total energy shift is: 

𝛿𝜔 = 𝐴(1 − 2𝑖𝜔) ∏ (𝑘2 − 1 − 4𝑖𝜔)𝑙
𝑘=1  ,     ([11], 64) 

 where 

𝐴 =
22𝑙+2(𝜇𝑀)4𝑙+5

(𝑙+1+𝑛)2𝑙+4 ∙
(2𝑙+1+𝑛)!

𝑛!
∙

(𝑙+1)(𝑙−1)

(2𝑙−1)‼[(2𝑙+1)!]2                                            (7)                                               

 

While for even parity (𝑆 = ±1) the equation (81 of the reff. [11]) looks like:  

 

4𝜔(4𝜔)(4𝑖√𝜇2 − 𝜔2)
2𝑙+1

[
𝑙!2

2𝑙!(2𝑙+1)!
]

2

∏ (𝑘2 + 16𝜔2) = −1𝑙
𝑘=1      ([11], 82)                            

 

As I mentioned earlier, this equation does not derive from equation (81), while, the equation (81) 

is not allowable for small (as compared with fine structure of Newtonlike levels) dampings.  
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There is need to accentuate, from the beginning the calculations in [8]-[11] are analytical but 

approximate. The results obtained by 3 groups of authors varies significantly. If there is an 

agreement for odd modes between [8,9] and [11], there is no an agreement  between these 2 

groups and [1] for great orbital momentums. The results in [10] varies significantly in the 

numerical coefficient, although the leading term (𝜇𝑀) in [10] and [11] coincides, but does not 

agree with calculations in [8] and [9]. 

To me the explanations of these differences is hidden in the fine and hyperfine interactions, 

which were not taken into account and which would lead to total agreement at least between [8, 

9] and [11]. From these interactions the most important is gravitational spin-orbit interaction 

which would modify in such a way calculations in [8, 9] and [11], that an agreement would be 

attained.  The gravitational spin-orbit interaction would modify the formula for levels energy (3) 

and (6) such a manner, that the damping would be changed significantly. This would happen, 

because the fine structure terms would be great for lowest states (𝑙 = 0, 1).  I would repeat here, 

that a quasistationary  state with 𝑙 = 0 would be possible, since the Compton wavelength of the 

Proca particle is great compared with the gravitational radius of the Black Hole. Only for small 

Compton wavelengths s-bound states are not possible.   

Then fine structure terms would contribute significantly to the levels damping, while the 

oscillations of the wave function in the region inside the barrier due to absorption would change 

the total energy of the particle. 

Coming back to the main purpose of this short letter, I would choose here for estimations of the 

absorption coefficient the analytical results obtained in the paper [8]. This would give at least the 

absorption coefficient for the scattered Proca field in the nonrelativistic limit.  Inversely, if the 

absorption coefficient would be calculated in the long wavelength limit, then the levels damping 

would be calculated form the poles of the S-matrix.   

The transmission coefficient for a scattered Proca wave in the nonrelativistic and long 

wavelength limit can be found easy from the property (1) and the formula (2) of the damping: 

𝑇𝑙
𝑃𝑟𝑜𝑐𝑎 =  𝜋2(𝜔𝑀)4𝑙+4 23𝑙+6

(𝑙)!(2𝑙+1)
 {

1,                                 𝑓𝑜𝑟 𝑠 = 0

√
[𝑛2−(𝑙+1)2](2𝑙−1)2(2𝑙−2)

(𝑛2−𝑙2)(2𝑙+3)(2𝑙+2)
, 𝑓𝑜𝑟 𝑠 ± 1

},   where 𝜔 ≅ 𝜇    (8) 

 

It is not difficult to estimate the absorption cross section in the long wavelength limit   𝜔𝑀 ≪ 1 

for vector mass field, taking into account that the main contribution is coming from the 𝑙 =

0, 𝑆 = 0  mode: 

𝜎𝑎𝑏𝑠
𝑃𝑟𝑜𝑐𝑎 =

𝜋𝑇1000

(𝜔𝑣)2 =  
16𝜋3𝑅𝐺

2

𝑣2 𝜔2𝑀2 ≡ 4𝜋2𝑆𝐻
(𝜔𝑀)2

𝑣2                                                    (9) 

where  

𝑅𝐺 =
2𝐺𝑀

𝑐2 − gravitational radius of a Black Hole, 𝑆𝐻 = 4𝜋𝑅𝐺
2 – the event’s horizon surface of a 

Black Hole, 𝑣 = √1 − (
𝜇

𝜔
)

2
≡ √1 − (

𝜇𝑐2

ℏ𝜔
)

2

.  

In the limit 𝑣 → 1 this cross section would be by 9𝜋2 times greater than the photonic cross 

section. There is also to be noted, that for  𝜔𝑀~1 the transmission coefficient and the absorption 

cross section, which would be created by 𝑙 ≥ 1 modes also,  would have represents diffraction 
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phenomena. It is also normally to expect, that in the short wavelength limit the absorption cross 

section would exhibit the obvious ultra relativistic (light ray)  𝜎 = 27𝜋𝑀2 =
27𝜋𝑅𝐺

2

4
=

27

4
𝑆𝐻  

shape.  

To estimate correctly the gravitational spin- orbit term would be useful to calculate this term in a 

weak field approximation, as in [15] and a refference therein.  
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