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I. INTRODUCTION

II. OPTICAL METRIC AND GAUSS-BONNET THEOREM

A. Static and spherically symmetric spacetime

We consider a static and spherically symmetric (SSS) spacetime. The SSS spacetime is

described as

ds2 = gµνdxµdxν

= gtt(r)dt2 + grr(r)dr2 + r2dΩ2, (1)

where µ and ν run from 0 to 3, and dΩ2 ≡ dθ2 + sin2 θdφ2. By introducing the notation as

A(r) ≡ −gtt and B(r) ≡ grr, this is rewritten as

ds2 = −A(r)dt2 + B(r)dr2 + r2dΩ2. (2)

B. Optical metric

In this paper, we consider light rays. The trajectories satisfy the null condition as ds2 = 0,

which is rearranged as, for Eq. (2),

dt2 = γijdxidxj

=
B(r)

A(r)
dr2 +

r2

A(r)
dΩ2, (3)

where i and j denote 1, 2 and 3. γij is often called the optical metric [1]. The optical metric

defines a three-dimensional space (denoted as Mopt), in which the light ray is expressed as

a curve.

Without loss of the generality, we can choose the photon orbital plane as the equatorial

plane (θ = π/2), because of the spherical summery of the spacetime. The two-dimensional

coordinates on the equatorial plane are denoted as xI , where I denotes r, φ. The nonvan-

ishing components of the optical metric are

γrr =
B(r)

A(r)
, (4)

γφφ =
r2

A(r)
. (5)
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In limit as R → ∞(CR→∞ → a circle in Euclid)

θR + θS ≠ π

κgdℓ → dϕ

Under the assumption of the asymptotic flatness

Gauss-Bonnet theorem becomes

∬D
KdS + ∫

ϕRS

0
dϕ + (θR + θS + 2 ×

π
2 ) → 2π

Geometrical expression for the deflection angle of light

α ≡ − ∬D
KdS = θR + θS + ϕRS − π

For non-asymptotic R and S,

Ishihara(H.A.)+ (2016,2017)

This is a finite-distance extension of Gibbons and Werner (2008)

For axisymmetric extensions, see e.g. Ono+ (2017)



the reference radial direction r!S and the fiducial emission
direction Γ! is equal to ΨS.
The receiver can say that the deflection angle of light α is

the angle between the light propagation direction Γ and the
fiducial emission direction Γ!. Note that Γ and Γ! are
defined at the receiver position. By construction, α
becomes ΨR −ΨS þ ϕRS. This is an interpretation of α.

C. Another integral form of the deflection angle of light

The above interpretation of the deflection angle does not
require the asymptotic flatness, while the integral in Eq. (7)
needs r → ∞. This motivates us to reexamine Eq. (7). We
consider the following region that is defined by using the
receiver, source, and the closest approach of the light ray.
See Fig. 5 for this domain. The boundaries of this region are
the radial lines through R or S, the light ray from S to R, and
the circle arc segmentC0 with radius of closest approach r0.
This domain is divided into two trilaterals. We denote one
trilateral, containing the receiver point, byDR and the other
trilateral, containing the source point, by DS. In both of
them, the inner angle at the closest approach is zero,
because the radial coordinate r in a light ray has a minimum
at the closest approach.
For the domain DR in Fig. 5, we use the Gauss-Bonnet

theorem to obtain
Z Z

DR

KdSþ
Z

P0

PR

κgdl −ΨR þ π
2
¼ 0; ð8Þ

where P0 denotes the periastron (the closest approach). In a
similar manner for DS, we obtain

Z Z

DS

KdSþ
Z

PS

P0

κgdlþΨS −
π
2
¼ 0: ð9Þ

By combining Eqs. (8) and (9), we find

ΨR − ΨS ¼
Z Z

DRþDS

KdSþ
Z

PS

PR

κgdl: ð10Þ

Hence, α in Eq. (2) is rewritten as

α ¼
Z Z

DRþDS

KdSþ
Z

PS

PR

κgdlþ ϕRS: ð11Þ

The right-hand side of this equation contains the radial
coordinate r ∈ ½r0; rR' or ½r0; rS'. Indeed, this radial interval
is exactly the same as that for the light ray from the source
to the receiver. On the other hand, the integration range for
the radial coordinate in Ishihara et al. is r ∈ ½r0;∞'.
Therefore, they needed the asymptotic flatness for treating
r ∼∞. The new form of α by Eq. (11) is better than the
previous form by Eq. (7), in the sense that Eq. (11) does not
require the asymptotic flatness. Note that neither Eq. (7) nor
Eq. (11) needs any constraint on the lens point L. Namely,
the lens object in the present method can be a black hole
with a horizon or a wormhole with a throat.
Please see the next section for Eq. (11) in asymptotically

nonflat spacetime models.

III. EXAMPLES IN ASYMPTOTICALLY
NONFLAT SPACETIMES

A. Kottler spacetime

As a first example of asymptotically nonflat spacetimes,
we consider the Kottler solution [25]. The line element is

FIG. 4. Angles and directions at the receiver. The black dotted
line corresponds to the radial direction rR at the receiver. The
black solid line denotes the tangent vector Γ to the light ray
through the receiver. The blue dashed line means the fiducial
radial direction r!S that is assumed by the receiver. The red solid
line is the hypothetical emission direction Γ! that is defined by
the receiver. The angle between the radial direction rR and the
light ray Γ is denoted as ΨR. The receiver defines the fiducial
radial direction r!S, such that the angle between rR and r!S can be
the same as ϕRS. The receiver defines also the hypothetical
emission direction Γ!, such that the angle between Γ! and r!S can
be the same as ΨS. As a result, the angle between the light ray Γ
and the hypothetical emission direction Γ! is ΨR − ΨS þ ϕRS.

FIG. 5. DR and DS. DR is a trilateral specified by the points R,
P0, and PR. DS is that specified by the points S, P0, and PS.
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the reference radial direction r!S and the fiducial emission
direction Γ! is equal to ΨS.
The receiver can say that the deflection angle of light α is

the angle between the light propagation direction Γ and the
fiducial emission direction Γ!. Note that Γ and Γ! are
defined at the receiver position. By construction, α
becomes ΨR −ΨS þ ϕRS. This is an interpretation of α.

C. Another integral form of the deflection angle of light

The above interpretation of the deflection angle does not
require the asymptotic flatness, while the integral in Eq. (7)
needs r → ∞. This motivates us to reexamine Eq. (7). We
consider the following region that is defined by using the
receiver, source, and the closest approach of the light ray.
See Fig. 5 for this domain. The boundaries of this region are
the radial lines through R or S, the light ray from S to R, and
the circle arc segmentC0 with radius of closest approach r0.
This domain is divided into two trilaterals. We denote one
trilateral, containing the receiver point, byDR and the other
trilateral, containing the source point, by DS. In both of
them, the inner angle at the closest approach is zero,
because the radial coordinate r in a light ray has a minimum
at the closest approach.
For the domain DR in Fig. 5, we use the Gauss-Bonnet

theorem to obtain
Z Z

DR

KdSþ
Z

P0

PR

κgdl −ΨR þ π
2
¼ 0; ð8Þ

where P0 denotes the periastron (the closest approach). In a
similar manner for DS, we obtain

Z Z

DS

KdSþ
Z

PS

P0

κgdlþΨS −
π
2
¼ 0: ð9Þ

By combining Eqs. (8) and (9), we find

ΨR − ΨS ¼
Z Z

DRþDS

KdSþ
Z

PS

PR

κgdl: ð10Þ

Hence, α in Eq. (2) is rewritten as

α ¼
Z Z

DRþDS

KdSþ
Z

PS

PR

κgdlþ ϕRS: ð11Þ

The right-hand side of this equation contains the radial
coordinate r ∈ ½r0; rR' or ½r0; rS'. Indeed, this radial interval
is exactly the same as that for the light ray from the source
to the receiver. On the other hand, the integration range for
the radial coordinate in Ishihara et al. is r ∈ ½r0;∞'.
Therefore, they needed the asymptotic flatness for treating
r ∼∞. The new form of α by Eq. (11) is better than the
previous form by Eq. (7), in the sense that Eq. (11) does not
require the asymptotic flatness. Note that neither Eq. (7) nor
Eq. (11) needs any constraint on the lens point L. Namely,
the lens object in the present method can be a black hole
with a horizon or a wormhole with a throat.
Please see the next section for Eq. (11) in asymptotically

nonflat spacetime models.

III. EXAMPLES IN ASYMPTOTICALLY
NONFLAT SPACETIMES

A. Kottler spacetime

As a first example of asymptotically nonflat spacetimes,
we consider the Kottler solution [25]. The line element is

FIG. 4. Angles and directions at the receiver. The black dotted
line corresponds to the radial direction rR at the receiver. The
black solid line denotes the tangent vector Γ to the light ray
through the receiver. The blue dashed line means the fiducial
radial direction r!S that is assumed by the receiver. The red solid
line is the hypothetical emission direction Γ! that is defined by
the receiver. The angle between the radial direction rR and the
light ray Γ is denoted as ΨR. The receiver defines the fiducial
radial direction r!S, such that the angle between rR and r!S can be
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r ∈ [r0, rR] for DR
r ∈ [r0, rS] for DS

No need of asymptotic flatness

Another domain = DR + DS

See Takizawa+(2020) for MK solution in Weyl conformal gravity



and

ðLSÞ2 − ðSUÞ2 ¼ ðDLSÞ2: ð21Þ

The first relation is obtained by using Fig. 3 and the second
one can be derived from the triangle LSU.
Equation (19) is used for the triangle in Fig. 6. B is thus

rewritten in terms of the angular distances as

B ¼ arctan
!
DS

DLS
tan β

"
: ð22Þ

In the similar manner, we use Eqs. (20) and (21) to obtain

LS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðSUÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

q
: ð23Þ

Equations (22) and (23) are substituted into the second
and first terms in the right-hand side of Eq. (17), respec-
tively. We thus obtain

αG − θ − arcsin
!

DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

p sin θ
"

þ arctan
!
DS

DLS
tan β

"

¼ 0; ð24Þ

where we used LR ¼ DL. Equation (24) is the gravitational
lens equation, in the sense that it is an equation for the
lensed image position θ when the intrinsic source position β
and the angular distances DL, DS and DLS are given. We
should stress that Eq. (24) is linear in αG. This linearity
makes perturbative calculations much simpler as shown
below.
Before going to iterative calculations, we mention a

relation of Eq. (24) to an improved version of the
gravitational lens equation by Bozza [20]. Equation (24)
is rearranged as

αG − θ þ B ¼ arcsin
!

DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

p sin θ
"
;

ð25Þ

where we used Eq. (22). By taking the sine of the both sides
of Eq. (25), we obtain

sinB cosðαG − θÞ þ cosB sinðαG − θÞ

¼ DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

p sin θ: ð26Þ

By using Eqs. (19) and (23) for the triangle in Fig. 6, we
obtain

sinB ¼ DS tan βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

p ; ð27Þ

cosB ¼ DLSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

p : ð28Þ

Substituting Eqs. (27) and (28) into Eq. (26) leads to

DS tan β cosðαG − θÞ þDLS sinðαG − θÞ ¼ DL sin θ: ð29Þ

It is straightforward to rearrange Eq. (29) as

DS tan β ¼ DL sin θ −DLS sinðαG − θÞÞ
cosðαG − θÞ

: ð30Þ

This is the improved expression of the lens equation by
Bozza [20]. We should note that this expression is highly
nonlinear in αG. It seems that it is not suitable for iterative
calculations in terms of a complicated form of αG, e.g., in
modified gravity theories [17].
Before closing this section, we mention the strong

deflection, for which the light ray can have the winding
number N ≥ 1. The photon trajectory is described by the
orbit equation ðdu=dϕÞ2 ¼ FðuÞ, where u ¼ 1=r. See e.g.,
Eq. (26) in Ref. [11] for this equation. The orbit equation
gives the angle separation from the source to the receiver as

ϕRS ¼ %
Z

R

S

duffiffiffiffiffiffiffiffiffiffi
FðuÞ

p ; ð31Þ

where % correspond to the anticlockwise or clockwise
motion, respectively. Therefore, ϕRS can be larger than 2π.
As a result, also αI in Eq. (3) can. Corresponding to this, αG
has a modulo 2π, so that it can describe also the strong
deflection case. See Ref. [12] for the strong deflection in
finite-distance cases. For the strong deflection case, it
should be noted that arcsin functions have a modulo 2π.
Therefore, Eq. (24) is modified for the strong deflection
case as

αG − θ − arcsin
!

DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLSÞ2 þ ðDSÞ2 tan2 β

p sin θ
"

þ arctan
!
DS

DLS
tan β

"

¼ 2nπ; ð32Þ

where n is an integer. Here, the sign of n is chosen as the
same as that of αG, such that n can mean the winding
number N of the light ray. Dabrowski and Schunck
mentioned also the large deflection case, where they
assume that the intersection point Q is in the lens plane
[19]. Even if the intersection point Q is in the lens plane and
the source and observer are at infinity, there are differences
between their equation and the present results of Eqs. (24)
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For the winding number , n

This is mathematically equivalent to Bozza (2008)

Takizawa, Ono, H.A. (2020)

B. Finite-distance expressions for the
deflection angle of light

We introduce the lens plane and the source one to
examine the gravitational lens equation. See Fig. 3 for the
gravitational lensing configuration in this paper, where the
thin lens approximation is not used. The (red in color) solid
curve in this figure shows the light ray from the source to
the receiver. The angles ΨR and ΨS appear in Eq. (3). The
tangents at the receiver and the source are denoted by the
dotted lines in this figure. These tangent lines intersect at
the point Q. Note that the intersection point Q is not
necessarily in the lens plane. In the conventional formu-
lation with the thin lens approximation for the asymptotic
receiver and source, the intersection point is often assumed
implicitly to be on the lens plane. The assumption that the
intersection point is in the lens plane needs a symmetric
configuration in which the receiver and source are equi-
distant from the lens. This additional assumption is made
also in Virbhadra and Ellis for their formulation of the
almost exact lens equation, though this formulation is valid
not only for the weak deflection but also for the strong
deflection [18]. See e.g., Fig. 1 and the paragraph including
Eqs. (1)–(3) in Ref. [18]. From the aspect of the triangular
inequality, Dabrowski and Schunck realized difficulties of
using the Virbhadra and Ellis lens equation and derived an
alternative lens equation [19]. However, the Dabrowski and
Schunck lens equation still relies upon the additional
assumption that the intersection point Q lies on the lens
plane. See Eq. (23) and the Appendix in Ref. [19]. The
additional assumption of the intersection point lying on the
lens plane was argued also by Bozza [20].
DL, DS and DLS denote the angular diameter distances

from the receiver to the lens, from the receiver to the source
and from the lens to the source, respectively. The angular
direction of the lensed image with respect to the lens
direction is denoted by θ and that of the intrinsic source
position is denoted by β. These angles θ and β are defined at
the receiver point. θ equals to ΨR. See also Fig. 3.

We consider a quadrilateral LRQS in Fig. 3,where L,R,Q
and S are positions for the lens, receiver, intersection point
andsource, respectively.Figure4 focuseson thequadrilateral
LRQS. In this geometrical configuration of the gravitational
lensing,wedefine thedeflectionangleof lightαG as the angle
at thepointQbetween these tangent lines. In thegravitational
lensing interpretation, the inner angle at the lens in LRQS is
assumed to be ϕRS. For the quadrilateral, we obtain

θ þ ϕRS þ ðπ −ΨSÞ þ ðπ − αGÞ ¼ 2π; ð5Þ

where we follow the gravitational lensing interpretation to
assume that the sum of the inner angles in any convex
quadrilateral is 2π. By using Eq. (5), we define αG as

αG ≡ θ −ΨS þ ϕRS: ð6Þ

From Eqs. (3) and (6), we find

αI ¼ αG; ð7Þ

where we use ΨR ¼ θ. Therefore, αI defined by Eq. (3) can
be safely interpreted as the deflection angle of light.
From Eqs. (4) and (7), we obtain the equivalence of the

three definitions of the deflection angle of light, namely

αG ¼ αI ¼ αK: ð8Þ

In the following, we use αG to study the gravitational lens
equation, because αG is written in terms of θ that plays a
crucial role in the gravitational lens equation.
Before going to detailed calculations of αG, we briefly

mention another finite-distance expression of the deflection
angle (denoted as αRM) computed by Richter and Matzner
for the parametrized post‐newtonian (PPN) metric [21]. The

FIG. 3. Geometrical gravitational lensing setup.

FIG. 4. Quadrilateral LRQS in the geometrical gravitational
lensing configuration. This is corresponding to Fig. 3. The
directional difference between the receiver and source is assumed
to be ϕRS at the point L. The (red in color) solid curve denotes the
light ray from the source to the receiver. The angle between the
two tangent lines in this figure is interpreted as the deflection
angle of light. The deflection angle is denoted as αG.
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Exact lens equation 
(small angle approximations are not assumed)

For extensions to dS/AdS backgrounds,  See Takizawa and HA (2022)

Thank you!


